
Best VM Selection for Big Data Applications across Multiple
Frameworks by Transfer Learning

Yuewen Wu
wuyuewen@otcaix.iscas.ac.cn

Institute of Software, Chinese Academy of Sciences
Beijing, China

Heng Wu∗
wuheng@iscas.ac.cn

Institute of Software, Chinese Academy of Sciences
Beijing, China

Yuanjia Xu
Yi HU

{xuyuanjia2017,huyi19}@otcaix.iscas.ac.cn
Institute of Software, Chinese Academy of Sciences

University of Chinese Academy of Sciences
Beijing, China

Wenbo Zhang
Hua Zhong
Tao Huang

{zhangwenbo,zhonghua,tao}@iscas.ac.cn
Institute of Software, Chinese Academy of Sciences

State Key Lab of Computer Sciences, Institute of Software,
Chinese Academy of Sciences

Beijing, China

ABSTRACT
Cloud providers are presentedwith a bewildering choice of VM types
for a range of contemporary data processing frameworks today.
However, existing performance modeling and machine learning ef-
forts cannot pick optimal VM types for multiple frameworks simul-
taneously, since they are difficult to balance model accuracy and
model training cost.

We propose Vesta, a novel transfer learning approach, to ad-
dress this challenge: (1) it abstracts knowledge of VM type se-
lection through offline benchmarking on multiple frameworks;
(2) it employs a two-layer bipartite graph to represent knowl-
edge across frameworks; (3) it minimizes training overhead by reus-
ing the knowledge to select the best VM type for given applications.
Comparing with state-of-the-art efforts, our experiments on 30 ap-
plications of Hadoop, Hive and Spark show that Vesta can improve
application performance up to 51% while reducing 85% training
overhead.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Transfer learning; • Software and its engineering
→ Cloud computing; • Social and professional topics→ Pric-
ing and resource allocation.

KEYWORDS
virtual machine, big data application, transfer learning, multiple
frameworks

∗Corresponding author

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9068-2/21/08.
https://doi.org/10.1145/3472456.3472488

ACM Reference Format:
Yuewen Wu, Heng Wu, Yuanjia Xu, Yi HU, Wenbo Zhang, Hua Zhong,
and Tao Huang. 2021. Best VM Selection for Big Data Applications across
Multiple Frameworks by Transfer Learning. In 50th International Conference
on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3472456.3472488

1 INTRODUCTION
Dozens of big data frameworks are available (e.g., Hadoop [22],
Hive [24], Spark) in various clouds today, and most users usually
choose two or more frameworks for their businesses, and have
to face a bewildering choice of Virtual Machine (VM) types (e.g.,
a1.medium, t2.large). For example, at the time of writing, Ama-
zon, Azure and Aliyun all provide over 100 VM types with varying
resource configurations (e.g., CPU, memory, disk, network). Intu-
itively, jointly optimizing of multiple frameworks will inevitably
lead to 10,000+ configurations. In this context, few users can tell
which VM type is “best” for their selected applications across mul-
tiple frameworks. To make matters worse, they may choose a VM
type with 12× extra budget but only get one third of performance
(e.g, application execution time) [1].

To address this challenge, existing performance modeling ef-
forts [21, 25, 29] and machine learning approaches [4, 18, 28] have
to tolerate huge offline training overhead to build an accurate online
model for each framework, since they just consider low-level metrics
(such as resource utilizations) within a framework. Sadly, they have
to spend a lot of time to train new models for similar applications
for new frameworks, although recent works [3, 5, 10] have proved
that these similar applications, both in Hadoop and Spark, involve
a wide range of use cases (micro benchmark, machine learning,
stream processing and etc.).

Figure 1 shows an example why we need to tolerate huge offline
overhead for a new framework. Hadoop TeraSort, Hive Aggregation
and Spark PageRank are applications from different frameworks.
Here, we can see their heat maps of budget look completely different.
This implies that existing approaches [4, 21, 25, 28, 29] may have
to build one model per framework. Fortunately, we observed that

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472456.3472488
https://doi.org/10.1145/3472456.3472488

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yuewen Wu, Heng Wu, Yuanjia Xu, Yi HU, Wenbo Zhang, Hua Zhong, and Tao Huang

5 1 0 1 5 2 0 2 5
5

1 0

1 5

2 0

2 5

C P U c o u n t (#)

RA
M

siz
e (

GB
)

1 0 8

1 5 5

2 0 2

2 4 9

2 9 6

3 4 3

3 9 0

4 3 6

4 8 3
C o s t ($ p e r d a y)

(a) The result of Hadoop TeraSort.

5 1 0 1 5 2 0 2 5
5

1 0

1 5

2 0

2 5

C P U c o u n t (#)

RA
M

siz
e (

GB
)

1 3 0

1 8 6

2 4 3

2 9 9

3 5 5

4 1 1

4 6 8

5 2 4

5 8 0
C o s t ($ p e r d a y)

(b) The result of Hive Aggregation.

5 1 0 1 5 2 0 2 5
5

1 0

1 5

2 0

2 5

C P U c o u n t (#)

RA
M

siz
e (

GB
)

0 8 1

1 1 6

1 5 2

1 8 7

2 2 2

2 5 7

2 9 2

3 2 7

3 6 3
C o s t ($ p e r d a y)

(c) The result of Spark PageRank.

Figure 1: Heat map of budget of three applications from different frameworks. The horizontal axis shows the number of CPU
cores, and the vertical axis shows the memory size (GB). Color changes indicate different costs, the lower the better.

low-level metrics have high-level similarities across frameworks
(blue area), the best (or near best) VM types all appear in the area
which follows similar CPU-to-memory ratio (e.g., 8G8U, 16G16U).
Here, we call them correlation similarities. As far as we know,
the metrics of correlation similarities have not been discussed to
choose the best VM types before.

Despite these observations, selecting best VM types for big data
applications across frameworks in existing efforts remains rudimen-
tary. In this paper, we use the term “best VM type” described in
[1, 28] to represent the blue areas in Figure 1, where VM types can
achieve optimal or near optimal application performance. Mean-
while, we consider correlation similarities as key factors in the
selection of the best VM types, and present a transfer learning
approach to address this challenge.

We believe our work makes the following advancements:

• we abstract knowledge (correlation similarities) of multiple
frameworks by conducting a large-scale evaluation on a wide
range of workloads 1 of Hadoop, Hive and Spark.

• we represent knowledge in a two-layer bipartite graph, and
reuse knowledge for various workloads across frameworks
to minimize prediction error and reduce training overhead.

• we evaluate Vesta by comparing against state-of-the-art ap-
proaches, the results show that Vesta can improve perfor-
mance up to 51% while reducing 85% training overhead.

2 PROBLEM STATEMENT AND MOTIVATION
2.1 Problem statement
In this paper, we measure the selection of best VM type in the
learning-based model by evaluating the training overhead and the
prediction error. In particular, learning-based systems usually have
two phases:

• Offline phase. For a given framework f , we first need to
train a offline model for various workloads {x1,x2, ...,xi } on
VM types {t1, t2, ..., tk }. Here, we employ function f unc(xi , tk , f)
and cost(xi , tk , f) to represent the model and the training
overhead, respectively.

1In this paper, the term workload refers the runtime state of a application, it can
also refer to the amount of work (or load) that software imposes on the underlying
computing resources.

0 % 2 0 % 4 0 % 6 0 % 8 0 %
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %
2 0 % U n a c c e p t a b l e

Pe
rce

nta
ge

 of
 wo

rkl
oa

ds
 %

P r e d i c t i o n e r r o r % (M e a n A b s o l u t e P e r c e n t a g e E r r o r , M A P E)

A c c e p t a b l e

Figure 2: The prediction error by reusing a pre-trainedmodel
(Hadoop and Hive) based on low-level metrics to predict the
best VM types for Spark. Nearly 80% of workloads (vertical
axis) are suffering from high prediction error.

0 2 0 4 0 6 0 8 0 1 0 0
2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

Pre
dic

tio
n e

rro
r %

T r a i n i n g o v e r h e a d (t e s t r u n s # f o r d a t a r e c o l l e c t e f f o r t s)

Figure 3: The training overhead from scratch for a new
framework. This process may take hundreds of hours [7] to
achieve acceptable prediction error.

• Online phase. For a new workload x ′ of the same frame-
work f , we can easily get a best VM type from f unc(xi , tk , f).

In this context, if we have another set of workloads
{
x∗1 ,x

∗
2 , ...,x

∗
n
}

from a new framework f ′, our goal is to reuse data from pre-trained
model f unc(xi , tk , f) to accelerate retraining f unc(x∗n , tk , f

′) with
acceptable overhead.

Now the questions are:

• How to minimize prediction error. Reducing prediction
error can improve application performance. In this paper, it

Best VM Selection for Big Data Applications across Multiple Frameworks by Transfer Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

means we should find a way tominimize the performance dif-
ference between the predicted VM type tpredicted (found by
f unc(x∗n , tk , f

′)) and the ground truth “best” VM type tbest
(e.g, found by brute-force searching), as shown in Equation 1.

min
���tpredicted − tbest

��� (1)

• How tominimize training overhead. As discussed above,
it is exhausting to train from the beginning for new frame-
works, and the overhead cannot be accepted in most online
scenarios [1, 28]. Reusing pre-trained model is a possible
way to minimize overhead, but we need to improve model
accuracy with acceptable retraining overhead, as shown in
Equation 2.

min cost(x∗n , tk , f
′) (2)

2.2 Problem Analysis
High prediction error in low-level metrics. Recent literatures
always focus on how low-level metrics affect the prediction error
within frameworks [16, 25], such as AWS Compute Optimizer on
Amazon 2. However, Figure 2 shows that these efforts may suffer
from high prediction error on new frameworks when just reusing
pre-trained models. In this paper, we discover new high-level met-
rics (named correlation similarities) and make them key factors
of knowledge across frameworks (Section III.A).

High training overhead fromscratch for a new framework.
Figure 3 shows the relationship between training overhead and pre-
diction error for a new framework, and it is exhausting to build one
model per framework. To balance these two factors, we first rep-
resent knowledge using a bipartite graph (Section III.B), and then
reuse it for a new framework with incremental training instead of
training from scratch (Section III.C).

3 VESTA DESIGN
Vesta solves the VM type selection problem with three steps: (1) it
runs a large-scale evaluation onAmazon EC2 to abstract knowledge;
(2) it builds a bipartite graph model to represent knowledge; (3) for
workloads from a new framework, it leverages a transfer learning
technique to reuse knowledge from previous frameworks.

In this paper, we treat classification (e.g., image classification)
as a way of “knowledge” [30], and group VM types (considering
various workloads for existing frameworks) into several categories.
When introducing a new framework with just few training data, it
would be helpful if we could transfer the classification knowledge.

3.1 Abstracting knowledge via a large-scale
evaluation

In order to study high-level similarities across frameworks, we
carry out a large-scale evaluation on Amazon Elastic Compute
Cloud (EC2). Specifically, we use two big data benchmarks (Big-
DataBench [26] and HiBench [15]) to run our tests. These bench-
mark workloads are chosen to be diverse in terms of their use cases

2The website of AWS Compute Optimizer: https://docs.aws.amazon.com/
awsaccountbilling/latest/aboutv2/ce-rightsizing.html.

Table 1: High-level similarities (correlations) across frame-
works.

Correlations Description

Resource metrics
CPU-to-memory A positive [⋆] correlation probably denotes a heavy computa-

tional workload, so it can infer to larger CPU andmemory sizes
in VM types. A negative correlation means the opposite side.

memory-to-disk A negative [≀] correlation can represent relatively small data
size, and can infer to lower VM memory size and disk band-
width in VM types. A positive correlation represents the oppo-
site side.

disk-to-network A positive correlation reveals that the workload exchange data
frequently to facilitate remote data storage capabilities, and can
infer to higher disk and network bandwidths in VM types. A
negative correlation means the opposite side.

buffer-to-cache A positive correlation reveals that buffer cache and page cache
are two critical memory caches in this workload, and can infer
to larger buffer and cache capabilities. A negative correlation
means the opposite side.

CPU-to-network A negative correlation probably means that there are lots of
data synchronizations in the workload, and can infer to higher
network bandwidths. A negative correlation means the oppo-
site side.

Execution metrics
iteration-to-parallelism A positive correlation means that the workload prefers run-

ning in a “thin” cluster (more iterations), and a negative cor-
relation means that it prefers running in a “fat” cluster (more
parallelism). It can infer to the choice of the number of VMs.

data-to-computation A positive correlation reveals that the workload has lots of
computation phases. A negative correlation means the opposite
side. It can infer to the choice of CPU cores and CPU rate.

data-to-cycle A positive correlation means that it may be a data-intensive
workload or a compute-intensive workload. A negative corre-
lationmeans the opposite side. It can infer to the choice of RAM
size and RAM type.

disk-to-synchronization A positive correlation reveals that theworkload exchanges data
frequently. A negative correlation means the opposite side. It
can infer to the choice of disk bandwidth and disk size.

network-to-
synchronization

A positive correlation means that the workload transfers data
frequently. A negative correlation means the opposite side. It
can infer to the choice of network bandwidth.

Note: [⋆] The positive correlation reveals the relationship between two variables in which both
variables move in tandem — that is, in the same direction. [≀] The negative correlation reveals one
variable decreases as the other variable increases.

and resource requirements, which can cover different applications
currently supported by Hadoop, Hive and Spark frameworks:

• Micro benchmark. It includes TeraSort, WordCount, Sort,
Count, and etc.

• Machine learning. It contains Linear Regression (linear),
Logistic Regression (LR), K-Means, Bayes, Principal Com-
ponents Analysis (PCA), Alternating Least Squares (ALS),
Collaborative Filtering (CF), Breadth First Search (BFS), Sin-
gular Value Decomposition (SVD), and etc.

• SQL-like processing. It includes Select, Join, Scan, Aggre-
gation, and etc.

• Search engine. It incorporates PageRank, Index, and etc.
• Streaming. It consists of Twitter, PageReview, and etc.

After each test run, we collect 20 low-level metrics that can
reflect application’s resource requirements, execution features, and
other system factors.

• Resource metrics: to evaluate the job performance. We
collect CPU system, user, idle rate for CPU metrics. RAM,
buffer, cache usage rate for memory metrics. Disk read, write
rate for disk metrics. Network send, receive, drop rate for
network.

• Execution metrics: to measure the relationship between
input data sizes and job performance.We keep a record of the

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yuewen Wu, Heng Wu, Yuanjia Xu, Yi HU, Wenbo Zhang, Hua Zhong, and Tao Huang

number of tasks in the computation, communication, syn-
chronization steps, and the ratio of data sizes to the number
of cycles, iterations, parallelism for each workload run.

After that, we run a correlation analysis for each low-level met-
rics pair. For instance, we calculate the correlation value between
CPU and memory and get the CPU-to-memory correlation with
normalized value from -1 to 1.

Table 1 summarizes high-level similarities across frameworks.
We first use Principal Components Analysis (PCA) to analyze the
importance of correlation values, which are divided into different
intervals (such as [0.1,0.15] and [0.8,0.85]), and determine which of
them is more relevant to find the best VM types for various work-
loads. We evaluate PCA and correlations in Figure 9 and Figure 10,
respectively.

Next, we use the correlation metrics as inputs to train a K-Means
model to group VM types into several categories, and abstract
classification knowledge of selecting the best (or near best) VM
types. We choose K-Means since it outperforms many competing
algorithms in terms of high accuracy and low overhead [20, 27]
with a simple hyperparameter k . We tune the k value for better
improvements in Figure 11.

3.2 Representing knowledge in a two-layer
bipartite graph

As shown in Table 2 and Figure 4, we employ a two-layer bipartite
graph to represent knowledge, which includes a workload-label
layer and a label-VM layer. Blue edges in those two layers denote
the knowledge we have obtained from existing workloads (source
workloads). Our goal is to draw the red edges, which can represent
the similarities of workloads from different frameworks (target
workloads). As such, we split this process into two steps:

• Build relationships betweenworkloads and labels. Each
workload can be annotated by at least one label. In this de-
sign, some workloads share one or multiple labels which
implies they tend to be similar with each other.

• Build relationships between labels and VM types. If a
target workload has the similar labels with some sources
(source and target workloads may from different frame-
works), the best VM types of them would have similar fea-
tures (e.g., 8G8U, 16G16U).

Further, the relationships can be divided into three subgraphs:
• G(XL) = X ∪ L = εXL , where εXL represents the edges link-
ing the nodes in X and L;

• G(X ∗L) = X ∗ ∪ L = εX
∗L , where εX

∗L represents the edges
linking the nodes in X ∗ and L;

• G(LT) = L ∪T = εLT , where εLT represents the edges link-
ing the nodes in L and T .

G
(XL)
i j =

{
1 if workload xi conforms to the label lj ,
0 otherwise; (3)

In this design, knowledge can be represented as G(XL) + G(LT),
and theway of reusing knowledge can be represented asG(X ∗L)+

G(LT). We determine G(XL) (blue lines in workload-label layer) in
Equation 3, and evaluate G(LT) (blue lines in label-VM layer) based

Table 2: Symbols and Notations

Symbol Notation
X = {x1, x2, ..., xi } X denotes the set of source workloads and xi de-

notes the ith source workload
X ∗ = {x∗1 , x

∗
2 , ..., x

∗
n } X ∗ denotes the set of target workloads and x∗n de-

notes the nth target workload
L = {l1, l2, ..., lj } L denotes the set of labels and lj denotes the jth

label
T = {t1, t2, ..., tk } T denotes the set of VM types and tk denotes the

kth VM type

Hadoop
TeraSort

Hive
Aggregation

Spark
PageRank

Labels (L)

Workloads
(X and X*)

Positive
CPU-to-memory

 correlation

Negative
memory-to-disk

 correlation

Positive
disk-to-network

 correlation

Positive
CPU-to-network

 correlation

VM types
(T)

VM type: R5n.xl
CPU = 8 #

memory = 32 Gib
network = 8 Gbps
disk = 4750 Mbps

VM type: M5.l
CPU = 4 #

memory = 8 Gib
network = 2 Gbps
disk = 3000 Mbps

VM type: C5.xl
CPU = 16 #

memory = 16 Gib
network = 4 Gbps
disk = 3500 Mbps

... ...

... ...

Hadoop
K-means

Source workloads (X) Target workloads (X*)
Spark
Bayes

Figure 4: Knowledge across frameworks are represented by
a two-layer bipartite graph, where edges represent the re-
lationships among workloads, labels and VM types. The
blue solid edges from source workloads reveal the relation-
ships among them, which we treat them as knowledge. The
red solid edges from target workloads represent the way of
reusing knowledge.

on the results in K-Means (Section 3.1). In this context, we mainly
deal with the following challenge:

• How to reuse knowledge in G(X ∗L). A target workload
may suffer from data sparse problem when it enters the
system [12], and it may be lack of data to create the workload-
label relationship G(X ∗L) (red lines in the bipartite graph).

3.3 Reusing knowledge by transfer learning
Based on the knowledge represented as blue edges in Figure 4,
we describe how to reuse knowledge (draw the red edges) with
relatively small training cost. Suppose that there are a bunch of
target workloads X ∗ from a new framework, we first build the
workload-label relationship X ∗L in a matrix:

U ∗ = X ∗LT1 (4)

where U ∗ is a matrix expression of workload-label relationship.
X ∗ ∈ Rn×д , L1 ∈ Rj×д , and n, j is the numbers in X ∗ and L1 respec-
tively, while д is the latent features. In this case, each workload x∗n
in X ∗ can be represented by a vector of latent features д, where as
д could be constructed by the correlation metrics, input data size,
etc.

Best VM Selection for Big Data Applications across Multiple Frameworks by Transfer Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Similarly, we define a new matrix V to represent label-VM rela-
tionship:

V = TLT2 (5)

where T ∈ Rk×д , L2 ∈ Rj×д . k , j is the numbers in T and L2
respectively, while д is the latent features. We suppose that both
U ∗ and V share the same set of labels, which means we may get
L1 = L2 and can use an unified representation of L.

We express knowledge in current frameworks by a matrixU =
XLT . Our goal is to reuse the decomposition results onU to help
us building the relationships among target workloads, correlation
labels and VM types.

In our scenario, the matrixU ∗ is sparse for a newly entered work-
load. We employ collective matrix factorization (CMF) proposed by
Singh and Gordon [23] to solve this problem. Our objective function
can be written as follows:

min
U ,F ,U ∗

λ ∥ U ∗ −U ∥2F +(1 − λ) ∥ U ∗ −V ∥2F

+R(U ,V ,U ∗)
(6)

where 0 ≤ λ ≤ 1 is a tradeoff parameter to control the decompo-
sition error between the two matrix factorization. ∥ · ∥F denotes
the Frobenius norm of matrix [9]. R(U ,V ,U ∗) is the regularization
function to control the complexity of the matrices. By calculating
the distance between U ∗ and U , we can decide which xi ∈ X are
suitable for transfer learning. Once the matrix factorization problem
is solved, we can reuse data from X to reduce training overhead.

We employ Stochastic Gradient Descent (SGD) algorithm [2] to
solve this optimization problem. Minimization of SGD is performed
by fixing two of the matrices and optimizing the remaining one
iteratively, until the results have converged.

The algorithm is summarized in Algorithm 1, where we use a
set of source workloads, a set of target workloads, a set of labels
and a set of VM types as inputs. First of all, we pick a sandbox 3

environment to run the target workload (see Lines 1-3). After that,
we abstract and reuse knowledge from source workloads (see Lines
4-11). Finally, we select the best VM types by a combination of
several techniques (see Lines 12-14). The converged cost can be esti-
mated by SGD algorithm. In the worse case, it may needO(n log(n))
costs to make the result converged [2], and n denotes the amount
of training data for the target workload.

4 IMPLEMENTATION
The architecture of Vesta includes offline profiling and online pre-
dicting phases, as shown in Figure 5. The offline profiling phase
uses the Data Collector and the Correlation Analyser to run source
workloads and abstract classification knowledge, respectively. The
online predicting phase uses the Online Predictor to predict the best
VM types for target workloads by combining various techniques.

4.1 Offline profiling
The goal of offline profiling is to abstract knowledge among existing
workloads (aka source workloads) and VM types. According to the
previous analysis in Section 3.2, the offline profiling phase mainly
accomplish two works:
3In here, sandbox VM type means it satisfies the resource requirements of the target
workload.

Algorithm 1 Vesta Algorithm
Input:

A set of source workloads X = {x1,x2, ...,xi }.
A set of target workloads X ∗ = {x∗1 ,x

∗
2 , ...,x

∗
n }.

A set of labels L = {l1, l2, ..., lj }.
A set of VM types T = {t1, t2, ..., tk }.

1: Run source workloads X on each VM type ti and collect low-
level metrics.

2: Pick a sandbox VM type to run a target workload x∗i for initial-
ization.

3: Analyze the correlations between low-level metrics variables.
4: Group the relationships between labels and VM types via K-

Means.
5: Construct matrices U ∗ = X ∗LT , U = XLT , and V = TLT that

reveal the workload-label and label-VM relationships, respec-
tively.

6: Denote the best VM type of target workload x∗n is tbest .
7: repeat
8: FixU and V , apply SGD algorithm to updateU ∗.
9: FixU ∗ and V , apply SGD algorithm to updateU .
10: FixU andU ∗, apply SGD algorithm to update V .
11: untilU , V andU ∗ are convergent.
12: Accomplish a full representation of U ∗ (by filling data from U)

in matrix space.
13: Retrain K-Means model with data inU ∗ with minimized over-

head.
14: Find the best VM type tbest by row-normalized weight matrix

T = FL−1.
Output:

The best VM type of a target workload x∗n .

Offline Profiling

Source

workloads Correlation

Analyzer

Data

Collector

Knowledge

Online Predicting

Target

workloads

Online

Predictor Reuse knowledge

Collective Matrix

Factorization

the best VM types

Figure 5: Architecture of Vesta.

Collect data fromsourceworkloads.We choose typical Hadoop
and Hive workloads to run benchmark profiling on Amazon EC2
(details are in Section 5). Considering the performance variability
in cloud environments, we run each workload 10 times to take a

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yuewen Wu, Heng Wu, Yuanjia Xu, Yi HU, Wenbo Zhang, Hua Zhong, and Tao Huang

conservative estimate of P90 values. TheData Collector collects low-
level metrics in every 5 seconds using average resource utilizations.
All data is stored in the MySQL database.

During each run, we also record correlation values for low-level
metrics (e.g., 0.85 CPU-to-memory correlation) to support further
analysis.

Train the offline K-Means model. The Correlation Analyzer
is designed to initialize the relationship between labels and VM
types. Specifically, we first measure the importance of correlations
to reduce irrelevant information, since irrelevant information could
deteriorate the accuracy of a system [6]. After that, we analyze the
correlation similarities through an exhaustive search solution in [6]
to further investigate the relationships. We use exhaustive search
because it can bring out the optimal result with relatively high cost,
which is acceptable for offline profiling. Finally, we train our offline
model (K-Means) to group VM types into several categories.

4.2 Online predicting
In this phase, users should provide Vesta with target workloads
and a set of VM types candidates. Then, Vesta predicts the best
VM types for target workloads effectively by reusing classification
knowledge from offline model.

In practical terms, Vesta first invokes the Online Predictor, which
runs the target workload on 3 randomly picked VM types to initial-
ize our CMF model. After that, Vesta can retrain the K-Means model
with low overhead. In addition, the data of the target workloads
may extremely sparse first (as target workloads are just entered the
system). Vesta would continually update the model in the matrix
space through SGD algorithm until the result converges. In the
worst cases, Vesta may train workloads from scratch, just as the
existing efforts.

5 EVALUATION
5.1 Experiment setup
Applications and settings. We employ two big data benchmarks
—BigDataBench andHiBench to provide typical use cases inHadoop,
Hive and Spark frameworks. Table 3 shows the 30 big data applica-
tions, which provides a wide range of workloads. These workloads
are not exhaustive but are intended to span the space of workload
requirements to monitor a multiple-framework scenario.

We use default values to set application parameters except for
executor4 and memory parameters in Spark. In order to prevent
out of memory (OOM) exceptions, we use Mesos [13] to watch
the real usage of memory per executor. Then, we set the number
of executors and the amount of executor memories based on the
memory usage statistics.

As for the setting of input datasets, we follow the configurations
in benchmarks. For instance, in HiBench, the dataset “gigantic”
denotes 30 GB, “huge” denotes 3 GB and “large” denotes 300 MB,
etc. In BigDataBench, we can set the input data size when required.
We set the input data size based on the execution time so that all
jobs run in a reasonable amount of time to reduce experiment costs.

4Executors are system processes in charge of running individual tasks in a given Spark
application.

Table 3: Big data application workloads used in our experi-
ments.

So
ur
ce

Se
t

Tr
ai
ni
ng

Se
t

No. Name

Ta
rg
et

Se
t

No. Name
1 Hadoop-terasort 19 Spark-spearman
2 Hadoop-wordcount 20 Spark-svd++
3 Hadoop-page-review 21 Spark-lr
4 Hadoop-linear 22 Spark-page-rank
5 Hadoop-lr 23 Spark-kmeans
6 Hadoop-twitter 24 Spark-bayes
7 Hadoop-bayes 25 Spark-BFS
8 Hadoop-index 26 Spark-CF
9 Hadoop-identify 27 Spark-sort
10 Hive-select 28 Spark-pca
11 Hive-join 29 Spark-grep
12 Hive-scan 30 Spark-count
13 Hive-full-join

Te
st
in
g
Se
t 14 Hadoop-nutch

15 Hadoop-pca
16 Hadoop-als
17 Hadoop-kmeans
18 Hive-aggregation

Note: Workloads with italic fonts are from HiBench, and workloads with normal fonts are from
BigDataBench.

VM types. Considering there are more than one hundred VM
types in today’s public clouds, such as Amazon, Google and Mi-
crosoft, we choose 120 enterprise-level VM types of x86 architecture
from Amazon EC2 5. Note that, in Amazon EC2, there are VM Cat-
egory and VM Family on top of VM type to identify the resource
characteristics. For each VM family, we choose reasonable VM types
to reduce costs based on statistics in [7]. Table 4 shows the 120 VM
types.

Table 4: VM types used in our experiments.

Category VM Family VM type

General Purpose

T3 small,medium,large,xlarge,2xlarge
T3a small,medium,large,xlarge,2xlarge
M5 large,xlarge,2xlarge,4xlarge,8xlarge
M5a large,xlarge,2xlarge,4xlarge,8xlarge
M5n large,xlarge,2xlarge,4xlarge,8xlarge

Compute Optimized

C4 large,xlarge,2xlarge,4xlarge,8xlarge
C5 large,xlarge,2xlarge,4xlarge,8xlarge
C5n large,xlarge,2xlarge,4xlarge,8xlarge
C5d large,xlarge,2xlarge,4xlarge,8xlarge
C4n small,medium,large,xlarge,2xlarge

Memory Optimized

R4 large,xlarge,2xlarge,4xlarge,8xlarge
R5 large,xlarge,2xlarge,4xlarge,8xlarge
R5a large,xlarge,2xlarge,4xlarge,8xlarge
R5n large,xlarge,2xlarge,4xlarge,8xlarge
X1 large,xlarge,2xlarge,4xlarge,8xlarge
z1d large,xlarge,2xlarge,4xlarge,8xlarge

Accelerated Computing G3 large,xlarge,2xlarge,4xlarge,8xlarge
G4 large,2xlarge,4xlarge,8xlarge,16xlarge

Storage Optimized I3 large,xlarge,2xlarge,4xlarge,8xlarge
I3en large,xlarge,2xlarge,4xlarge,8xlarge

Alternative solutions. We compare our system against ma-
chine learning solution — PARIS [28] and performance modeling
solution — Ernest [25]. PARIS uses a Random Forest model to predict
the best VM types for data-intensive workloads. It assumes that
a new-coming workload can be located to a category in Random
Forest perfectly if it is from the same framework. Ernest leverages a
performance-cost model to predict the performance of Spark based
large-scale advanced analytics jobs through extensive performance
measurement, but it only works well in Spark applications.

Table 5 shows the details of alternative solutions in our experi-
ments.
5More details are in the website https://aws.amazon.com/ec2/instance-types/.

Best VM Selection for Big Data Applications across Multiple Frameworks by Transfer Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

H a d o
o p -

n u t c
h

H a d o
o p -

p c a

H a d o
o p -

a l s

H a d o
o p -

k m e a n
s

H i v e -
a g g

r e g
a t i o

n

S p a r
k - s p

e a r
m a n

S p a r
k - s v

d + +
S p a r

k - l r

S p a r
k - p a

g e -
r a n

k

S p a r
k - k m

e a n
s

S p a r
k - b a

y e s

S p a r
k - B

F S

S p a r
k - C

F

S p a r
k - s o

r t

S p a r
k - p c

a

S p a r
k - g r

e p

S p a r
k - c o

u n t
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

MA
PE

 Re
lat

ive
 %

 P A R I S
 E r n e s t
 V e s t a

Figure 6: Comparing the prediction error against alternatives on multiple frameworks. The horizontal axis shows different
workloads, and the vertical axis shows the MAPE. The bars show the standard deviations in the MAPE.

V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t V e s t a E r n e s t
T 3 . s m a l l M 5 a . l a r g e M 5 n . l a r g e C 4 . l a r g e C 5 . 4 x l a r g e C 5 d . 2 x l a r g e R 4 . 4 x l a r g e R 5 a . 2 x l a r g e G 3 . l a r g e I 3 . 2 x l a r g e

1 0 0

1 1 0

1 2 0

Pre
dic

ted
 / O

bs
erv

ed
 (%

) R a n g e o f p r e d i c t i o n s T h e a v e r a g e p r e d i c t i o n

Figure 7: The results of predicting Spark-lr workload’s execution time in 10 VM types. The horizontal axis shows 10 different
VM types, and the vertical axis shows the prediction error. Boxes in different colors represent the prediction results of different
VM types. The bar shows 10th and 90th percentile of deviations.

0

10

20

30

40

50

60

70

80

90

100

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5 1 0 0

P
re

d
ic

ti
o

n
 e

rr
o

r
(M

A
P

E
 %

)

PARIS Ernest Vesta

Training overhead (#)

Figure 8: Training overhead comparing against PARIS and
Ernest. According to our experimental setup (in Table 5),
PARIS is training Spark workloads from scratch.

Datasets. To evaluate the effectiveness of optimizing workloads
across multiple frameworks, we split 30 workloads of Hadoop, Hive
and Spark into source and target sets. The source set is composed of
Hadoop and Hive workloads, and the target set is formed of Spark
workloads (see Table 3). Our goal is to compare the prediction of
the best VM types for workloads in the target set.

Table 5: Alternative solutions in our experiments.

Solutions Description
PARIS In our empirical study in Figure 2, we argue that the way of reusing

model is very fragile in practice — that is, the model is trained on
Hadoop and Hive workloads, and we will test it on Spark.

Ernest This performance model only works well on Spark workloads. We try
to improve the model by assigning new weights for Hadoop and Hive,
but the improvements for Hadoop and Hive are still limited.

In the source set, we use 13 workloads (mixed of Hadoop and
Hive) as the training set to train our offline model, and use other 5
workloads in the testing set to test it. We use both Hadoop and Hive
to build the source set because Hive workloads can cover SQL-like
processing that Hadoop does not support.

In the target set, all workloads are from a different framework
(Spark).

5.2 Experiment Metrics
We use the following metrics to evaluate Vesta:

• Performance improvement. In order to measure the im-
provement of application performance, we investigate how
well the model can predict for a given application workload.
In particular, we first observe ground truth “best” results by
exhaustively running workloads on 120 VM types. Then, we

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yuewen Wu, Heng Wu, Yuanjia Xu, Yi HU, Wenbo Zhang, Hua Zhong, and Tao Huang

CPU-to-memory

memory-to-disk

disk-to-network

buffer-to-cache

CPU-to-network

CPU-to-disk
iteraction-to

parallel
network-to-synchor

CPU-to-memory

memory-to-disk

disk-to-network

buffer-to-cache

CPU-to-network

data-to-cycle

data-to-computation

Hadoop Hive
CPU-to-memory

memory-to-disk

disk-to-network

buffer-to-cache

CPU-to-network

memory-to-network

iteraction-to parallel

data-to-
computation

Spark

data-to-
computation

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.15 0.3 0.45 0.6
Importance index % Importance index % Importance index %

Figure 9: Importance of the correlations for workloads in Hadoop, Hive and Spark, respectively.

W
or

kl
oa

d
co

ns
is

te
nc

y
on

 V
M

 ty
pe

 s
el

ec
tio

n
(E

uc
lid

ea
n

di
st

an
ce

)

10-8

10-6

10-4

10-2

100

Number of workloads
100 101 102

Positive CPU-to-memory
(0.45 ~ 0.5)

Positive
network-to-disk

(0.55 ~ 0.6)

Negative CPU-to-memory
(-0.95 ~ -0.9)

Positive
memory-to-disk

(0.35 ~ 0.4)

Negative
network-to-disk
(-0.25 ~ -0.2)

Negative
data-to-cycle
(-0.75 ~ -0.7)

Positive
buffer-to-cache

(0.1 ~ 0.15)

Figure 10: Evaluating correlations on different workloads
and VM types. The horizontal axis shows the number of
workloads with similar correlation values, and the vertical
axis shows the VM type consistency on different workloads
(evaluated by Euclidean distance). We can summarize that:
there are popular correlations among considerable amount
of workloads to facilitate good results in K-Means.

use MAPE (Mean Absolute Percentage Error) [8] to indicate
the prediction error, and calculate the MAPE percentile be-
tween the predicted result to the ground truth “best” result.

MAPE =
100%
m

m∑
i=0

����predicted − ground truth
ground truth

���� (7)

where m is the number of runs, and the MAPE range is
[0,+∞).MAPE = 0 denotes a perfect model, whileMAPE >
100 indicates a very bad model.

• Training overhead. In online phase, when workloads from
a new framework arrive, Vesta needs to run these work-
loads on a few VMs to collect training data. We evaluate this
training overhead comparing against alternatives.

• Practical metrics. To evaluate the best VM types on clouds
for various workloads, we use two widely used performance
targets — execution time and budget to measure the effective-
ness of comparison systems. The execution time represents
the time spent executing a workload on a specific VM type,

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 1 0 k = 1 1 k = 1 2
0

2 0

4 0

6 0

8 0

1 0 0

MA
PE

 re
lati

ve
%

 H a d o o p - n u t c h
 H a d o o p - p c a
 H a d o o p - a l s
 H a d o o p - k m e a n s
 H i v e - a g g r e g a t i o n
 1 0 - f o l d C r o s s V a l i d a t i o n

Figure 11: Evaluating the parameter k in K-Means, we tune
it by running 10-fold cross validation. The horizontal axis
shows different k values, and the vertical axis shows the
MAPE. Boxes in different colors represent different work-
loads from the testing set in Table 3, and the bars show the
10th and 90th percentile of deviations in MAPE.

and the budget denotes the cost of running the workload on
the VM type.

5.3 Effectiveness of Vesta
We first evaluate the performance and overhead improvements
for workloads from a new framework with several experiments.
Following with evaluations of main components in Vesta such
as PCA and K-Means. At last, we prove that Vesta can practical
implicate to predict best VM types with shorter execution time and
lower budget.

The performance and overhead improvements for work-
loads from a new framework.We use workloads in source set to
train the model, and use workloads in target set to test the model.

Figure 6 shows the prediction error comparison against alterna-
tive solutions. The result shows that the overall prediction error of
Vesta has been reduced by up to 51% comparing against machine
learning approach PARIS. In other words, applications can achieve
51% performance improvement in Vesta for a new framework.When
comparing against Ernest, for Hadoop and Hive workloads, Vesta
can reduce 4× prediction error since Ernest can only works well
on Spark workloads (we have explained the reason in Table 5). But
there are two exceptions (Spark-svd++ and Spark-CF) whose errors
are much higher than others. In the case of Spark-svd++, we find

Best VM Selection for Big Data Applications across Multiple Frameworks by Transfer Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Figure 12: Comparing the effects of execution time optimization against alternatives. The horizontal axis shows the number
of runs, and the vertical axis shows the predicted execution time in seconds.

H a d o
o p -

t e r a
s o r t

S p a r
k - C

F

S p a r
k - s v

d + +

H a d o
o p -

l r
H i v e -

j o i n

H i v e -
s c a

n
0

5 0

1 0 0

1 5 0

2 0 0

Bu
dg

et
($

pe
r d

ay
)

 P A R I S
 E r n e s t
 V e s t a

Figure 13: Comparing the effects of budget optimization
against alternatives, the lower the better. The horizontal
axis shows multi-framework applications, and the vertical
axis shows the predicted budget. The bars show the 10th and
90th percentile of deviations in budget.

that it runs with high variance (close to 40%) every time and the pre-
diction error in Vesta is within the variance. In the case of Spark-CF,
the result does not converge in the SGD algorithm, which means
it can hardly match with current knowledge in the offline model.
In such case, we set a converge limitation in the online predicting
phase to control when to stop the online process.

To further investigate the ability of improving applications’ per-
formance compared with performance modeling approach Ernest,
we choose 10 typical VM types in Table 4, and predict the execution
time of a compute-intensive workload Spark-lr. Figure 7 shows the
predicting result, and we use (Predicted/Observed) × 100% to eval-
uate the deviation between the predicted result and the observed
result. In all of the cases, Vesta performs a better or at least a com-
parable result against Ernest since Vesta trains with large data sets
offline.

Next, we evaluate the training overhead comparing against al-
ternatives. In general, Vesta benefits from CMF model that can
reuse knowledge from source workloads to reduce data collection
efforts. In Equation 6, there is a parameter λ which can control the
decomposition error in matrices. We set λ = 0.75 according to our
best practice. Other techniques we used such as PCA and K-Means
are discussed in following experiments. After that, we measure the
effectiveness of reducing training overhead. Figure 8 compares the
number of reference VMs for predicting Spark workloads against
PARIS (train its model from scratch) and Ernest (low training over-
head due to accurate modeling). The result shows that Vesta can
reduce up to 85% training overhead comparing against machine
learning approach PARIS (15 to 100), and the overhead is close to
performance modeling approach Ernest. In total, Vesta incurs in
substantially lower training overhead, due to various techniques,
namely reusing the best VM selection knowledge via a combination
of techniques.

The availability of main components in Vesta. In this ex-
periment, we will evaluate several techniques used in Vesta.

First, we evaluate the importance of features via PCA and use
importance index to evaluate them. As shown in Figure 9, the result
shows that the importance indexes of three workloads of Hadoop,
Hive and Spark, respectively. We use these results to reduce irrele-
vant information, and can reduce 49% useless data effectively.

Second, we leverage an exhaustive evaluation to study the corre-
lations to further investigate correlation distribution among work-
loads. As we described in Section 3.1, we divide correlation values
into 0.05 intervals to evaluate relevant correlations on different
workloads and VM types. Figure 10 shows the result of correla-
tion analysis. The horizontal axis denotes the popularity of labels
(evaluated by the number of workloads in a same correlation in-
terval), and the vertical axis represents the consistency of different
workloads that prefer the same VM type (calculated by Euclidean
distance). From the result, we can observe that most of the data

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yuewen Wu, Heng Wu, Yuanjia Xu, Yi HU, Wenbo Zhang, Hua Zhong, and Tao Huang

(near 90%) are stick together in the center, and we believe that the
correlation distribution can reveal some facts: popular labels are not
always more valuable than others (e.g., positive network-to-disk
correlation of 0.55 to 0.6 on the right area); many workloads are
close to each other in terms of VM type consistency (e.g., data in the
center). In summarize, the result can prove that there are popular
correlations among considerable amount of workloads to facilitate
good results in K-Means.

Finally, we leverage a K-Means algorithm to train Vesta’s offline
model, we tune the hyperparameter k, and use 10-fold cross vali-
dation to evaluate the result. Figure 11 shows that Vesta achieves
lower prediction error when we set k to 9.

The practical implication of selecting the best VM type.
Due to a combination of several technique, Vesta can find best VM
types with shorter execution time effectively. Figure 12 shows the
progression of finding shorter execution time for application work-
loads separately. Vesta is fastest for 5 of the 6 workloads except for
Spark-svd++, whereby PARIS by chance finds better configurations
during initial runs.

Vesta can also find VM types with lower budget. Figure 13 shows
the comparison of the progress of finding lower budget for each
application workload. Vesta performs better or comparable results
comparing against alternatives. PARIS performs poorly on Spark
since it is trained on Hadoop and Hive. Ernest does not work well
on Hadoop and Hive because it is specifically designed for Spark.

6 RELATEDWORK
Performance modeling. Ernest [25] makes a statistical profile of
advanced analytics frameworks (Spark-like), and decomposes Spark
jobs into different communication patterns. Similarly, MRTuner [21]
builds a comprehensive model to represent the inter-task pipelines
of a MapReduce job. These works cannot flexibly adapt to other
frameworks without redesigning their models.

Black-box searching. In recent years, black-box search solu-
tions have been designed to address this issue. CherryPick [1]
introduces a Bayesian Optimization method to search the optimal
cloud configurations for recurring jobs. However, it is designed to
predict performance in a small set of VM types, andmay suffer a low
prediction accuracy if the search space is too large. Arrow [14] tries
to solve the limitations on CherryPick using low-level performance
metrics to augment the process of BO to reduce search cost and
improve search accuracy. However, as shown in Figure 2, low-level
metrics may suffer from high prediction error across frameworks.

Machine learning. PARIS [28] uses a Random Forest model to
train a VM predictor for workloads across multiple cloud providers.
However, we have illustrated that the way of reusing pre-trained
model is fragile when workloads are from different frameworks.
Vanir [4] combines a series of techniques such as Mondrian forest
model and transfer learning to search the right cloud configurations.
But their have not yet studied the correlation similarities or other
types of similarities across frameworks.

Tuning application configurations. Recent projects aim at
tuning application configurations in clouds. Some of them [11,
17, 19] monitor a specific framework and adjust configurations to
improve the application performance. Others search for the best
configurations using random [19] or local [11] strategy. Compared

to application configurations, VM types have a smaller search space
but a higher cost of trying out a VM type (both the expense and the
time). Thus we find that reusing knowledge is critical for reducing
costs.

7 CONCLUSION
In this paper we present Vesta, a transfer learning based system that
predicts the best (or near best) VM types for big data applications
across frameworks. Vesta abstracts knowledge offline and reuses
knowledge online to predict the best VM types effectively.

Our method can cover a wide range of existing big data frame-
works since they follow a basic architecture design of Bulk Syn-
chronous Parallelism. What we need to do is to choose appropriate
metrics according to workload characteristics and train new pre-
dictive function on them. For example, latency and throughput
are important variables for measuring the performance of latency-
sensitive workloads.

ACKNOWLEDGMENTS
We thank zhangbing ZHOU for careful and constructive comments.
This work was supported by National Key Research and Develop-
ment Program of China (2018YFB1402803).

REFERENCES
[1] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,

Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics.. In NSDI, Vol. 2. 4–2.

[2] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. 2018. Byzantine stochastic gradient
descent. Advances in Neural Information Processing Systems 31 (2018), 4613–4623.

[3] Mohamed A. Attia and Ravi Tandon. 2019. Near Optimal Coded Data Shuffling
for Distributed Learning. IEEE Transactions on Information Theory 65, 11 (2019).

[4] Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. 2020. Finding the
right cloud configuration for analytics clusters. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 208–222.

[5] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Alexandre V Evfimievski,
and Prithviraj Sen. 2018. On Optimizing Operator Fusion Plans for Large-Scale
Machine Learning in SystemML. Proceedings of the Vldb Endowment (2018).

[6] Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. 2018. Feature selection in
machine learning: A new perspective. Neurocomputing 300 (2018), 70–79.

[7] Eli Cortez and etc. 2017. Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms. In SOSP.
ACM.

[8] Arnaud De Myttenaere, Boris Golden, and Le Grand. 2016. Mean absolute per-
centage error for regression models. Neurocomputing 192 (2016), 38–48.

[9] John Kevin Doyle, Thomas W Tucker, and Mark E Watkins. 2018. Graphical
frobenius representations. Journal of Algebraic Combinatorics 48, 3 (2018).

[10] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold
Reinwald. 2018. Compressed linear algebra for large-scale machine learning.
Vldb Journal 27, 5 (2018), 719–744.

[11] Anastasios Gounaris and Jordi Torres. 2018. A methodology for spark parameter
tuning. Big data research 11 (2018), 22–32.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[13] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A platform for
fine-grained resource sharing in the data center.. In NSDI, Vol. 11. 22–22.

[14] Chin-Jung Hsu, Vivek Nair, and Freeh. 2018. Arrow: Low-level augmented
bayesian optimization for finding the best cloud vm. In ICDCS. IEEE, 660–670.

[15] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analysis.
In ICDEW 2010. IEEE, 41–51.

[16] Wissem Inoubli, Sabeur Aridhi, Haithem Mezni, Mondher Maddouri, and En-
gelbert Mephu Nguifo. 2018. An experimental survey on big data frameworks.
Future Generation Computer Systems 86 (2018), 546–564.

[17] Yan Li, Bo An, Junming Ma, Donggang Cao, Yasha Wang, and Hong Mei. 2020.
SpotTune: Leveraging Transient Resources for Cost-efficient Hyper-parameter
Tuning in the Public Cloud. arXiv preprint arXiv:2012.03576 (2020).

Best VM Selection for Big Data Applications across Multiple Frameworks by Transfer Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

[18] Yan Li, Junming Ma, and Donggang Cao. 2020. Cross-Domain Workloads Perfor-
mance Prediction via Runtime Metrics Transferring. In 2020 IEEE International
Conference on Joint Cloud Computing. IEEE, 38–42.

[19] Harshitha Menon and etc. 2020. Auto-tuning Parameter Choices in HPC Appli-
cations using Bayesian Optimization. In IPDPS. IEEE, 831–840.

[20] Xiaobo Shen, Weiwei Liu, Ivor Tsang, Fumin Shen, and Quan-Sen Sun. 2017. Com-
pressed k-means for large-scale clustering. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31.

[21] Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, and Chen Wang. 2014.
MRTuner: a toolkit to enable holistic optimization formapreduce jobs. Proceedings
of the VLDB Endowment 7, 13 (2014), 1319–1330.

[22] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. 2010.
The hadoop distributed file system.. In MSST, Vol. 10. 1–10.

[23] Ajit P Singh and Geoffrey J Gordon. 2008. Relational learning via collective matrix
factorization. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 650–658.

[24] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, and etc. 2009. Hive: a warehous-
ing solution over a map-reduce framework. Proceedings of the VLDB Endowment
2, 2 (2009), 1626–1629.

[25] Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-Scale
Advanced Analytics.. In NSDI. 363–378.

[26] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, et al. 2014. Bigdatabench: A big data benchmark suite from internet
services. In HPCA. IEEE, 488–499.

[27] Jason Xu and Kenneth Lange. 2019. Power k-means clustering. In International
Conference on Machine Learning. 6921–6931.

[28] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton Smith, and
Randy H Katz. 2017. Selecting the best vm across multiple public clouds: A
data-driven performance modeling approach. In SoCC. ACM, 452–465.

[29] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In Proceedings of
the 2017 Symposium on Cloud Computing. ACM, 338–350.

[30] Hua Zuo, Jie Lu, Guangquan Zhang, and Feng Liu. 2019. Fuzzy Transfer Learning
Using an Infinite Gaussian Mixture Model and Active Learning. IEEE Transactions
on Fuzzy Systems PP, 2 (2019), 1–1.

	Abstract
	1 Introduction
	2 Problem Statement and Motivation
	2.1 Problem statement
	2.2 Problem Analysis

	3 Vesta Design
	3.1 Abstracting knowledge via a large-scale evaluation
	3.2 Representing knowledge in a two-layer bipartite graph
	3.3 Reusing knowledge by transfer learning

	4 Implementation
	4.1 Offline profiling
	4.2 Online predicting

	5 Evaluation
	5.1 Experiment setup
	5.2 Experiment Metrics
	5.3 Effectiveness of Vesta

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

