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ABSTRACT
Improving QoS by simultaneously reducing the latency violation
rate and jitter in the presence of multiple deep learning inference
(DLI) tasks sharing a single edge computing processor remains a
challenge. However, existing DLI systems at the edge, designed
to maximize throughput, face performance challenges when con-
fronted with requests with varying QoS.

In this paper, we present SPLIT, a QoS-aware DNN inference
system on shared GPU via evenly-sized model splitting to improve
QoS by reducing the latency violation rate and jitter. SPLIT applies
a genetic algorithm to evenly split models into diverse operator
combinations, or blocks, thereby minimizing the standard deviation
of block execution time to reduce jitter. Furthermore, we develop a
preemption method based on a greedy algorithm to swiftly assess
whether an incoming request should preempt to minimize latency.
We evaluate SPLIT with five common deep learning models and the
experimental results reveal that SPLIT outperforms state-of-the-art
approaches, reducing the latency violation rate by up to 43% and
jitter by up to 69.3%.
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1 INTRODUCTION
Nowadays, edge platforms [5, 20–22] need to handle diverse deep
learning inference requests (DLI requests) simultaneously, such as
object detection, classification, and text generation. In these scenar-
ios, long and short requests share the same computing processor.
For example, in autonomous driving scenarios [14, 33], human de-
tection constitutes long requests, while person tracking and pose
extraction represent short requests, which are triggered at any time
to assess route safety. In such cases, QoS (Quality of Service), in-
cluding the latency violation rate and jitter [4], is a critical metric.
However, existing DLI systems at the edge, designed to maximize
throughput, face performance challenges when confronted with
requests with varying QoS.

Some DLI systems, such as ClockWork [9], employ request-level
preemption, allowing long requests to be interrupted for short re-
quest resource preemption. However, the preempted request must
rerun, resulting in inefficiency and extra latency. As illustrated in
Figure 1, a short request A and a long request B share the same com-
puting processor. The typical Stream-Parallel approach [24] runs
all tasks simultaneously on the same GPU through multiple GPU
streams, which is the concurrent execution method from native
GPU multi-stream support. It focuses on throughput improvement
while causing serious resource contention among requests. Alterna-
tively, Runtime-Aware approach [34] utilizes model splitting, divid-
ing the model into operator combinations (e.g., 𝑐𝑜𝑛𝑣 , 𝑟𝑒𝑙𝑢, 𝑝𝑜𝑜𝑙𝑖𝑛𝑔)
called blocks or sub-models. This model splitting-based concur-
rency reduces resource contention and improves global throughput.
However, if a short request A arrives, it has to be aligned with re-
quest B and wait for the completion of request B, causing significant
latency violation for request A. A feasible solution involves split-
ting models into blocks and allowing preemption at block bound-
aries without alignment. However, arbitrarily splitting models into
unevenly-sized blocks can lead to substantial waiting latency for
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short requests, as they dynamically arrive and their arrival time are
uncertain.

Ideally, models should be split into evenly-sized blocks, as de-
picted in Figure 1, to reduce the latency violation rate byminimizing
the average response ratio (normalized end-to-end latency 1) com-
pared to other methods. Nonetheless, determining the number of
blocks to split and ensuring evenness remains challenging due
to the numerous splitting candidates (including optional splitting
positions and the corresponding number of splits).

In this paper, we introduce SPLIT, a QoS-aware DNN inference
system on shared GPU via evenly-sized model splitting, which
contributes the following advancements:

• We develop a novel genetic algorithm for offline profiling
of over 20,000 splitting candidates, guiding the genetic algo-
rithm to initialize and choose splitting candidates with the
optimal number of blocks for common DNN models while
maintaining evenness.

• We implement a greedy preemption method based on min-
imum response ratio to reduce the preemption overhead,
which is aimed at addressing the preemption among blocks
and avoiding the latency violation.

• Our experimental evaluation demonstrates that SPLIT can
improve QoS by reducing the latency violation rate by up to
43% and jitter by up to 69.3% compared to state-of-the-art
approaches.

2 PROBLEM ANALYSIS AND CHALLENGES
In this section, we first analyze the severity of interactions in concur-
rent inference, then discuss the importance of the latency violation
rate and jitter as QoS metrics. We also examine the necessity of
evenly-sized model splitting and challenges associated with it.

2.1 DLI on Edge Platforms
Multiple DLI requests sharing a single computing processor.
Edge scenarios often involve long and short DLI requests sharing a
single computing processor. For example, in autonomous driving
scenarios, the on-board processor continuously runs person detec-
tion requests, while personal tracking and pose extraction requests
are executed as individuals approach the car to determine potential
route conflicts. With limited on-board processor resources, short
requests preempt the execution of long requests to guarantee their
QoS.

The latency violation rate and jitter are important metrics
of QoS for DLI on edge. Unlike concurrent inference systems that
primarily focus on throughput, the latency violation rate and jitter
are essential QoS metrics for independently arriving, sequentially
executed requests. According to related works [4, 29], the latency
target of the request is based on their uninterrupted and isolated
execution time. Real-time video processing requests, for instance,
are concerned with both the latency violation rate and jitter, as a
few frames violate the latency target (response ratio greater than
a threshold) can reduce request stability. Hence, we consider both
the latency violation rate and jitter as QoS metrics.

1The end-to-end latency is the time from the arrival of the request to the end of
execution, including execution time and wait time.

2.2 Model Splitting
A deep learning model combines multiple operators, and its inter-
operator data dependencies can be represented as a directed acyclic
graph (DAG). Model splitting divides long models into smaller
blocks at operator boundaries.

Splitting-based concurrency approaches overlook the la-
tency target of short requests, leading to latency violation.
Deep learning model operators have diverse resource requirements,
causing traditional concurrency approaches to introduce significant
contention overhead as operators compete for computing resources.
This results in short requests experiencing similar end-to-end la-
tency as long requests. To address this issue, the related work [34]
proposes a splitting-based concurrency approach, aligning opera-
tors based on their resource requirements to avoid contention and
reduce global end-to-end latency. This method improves through-
put when requests continuously arrive without gaps, but it also
generates considerable idle time for short requests due to alignment.

Sequential preemption approaches without model split-
ting can cause latency violation and jitter. Executing multiple
requests sequentially may result in latency violation and jitter, as
long requests monopolize the compute processor, causing short
requests to endure long waiting latency (potentially several time
longer than their execution time). In the edge scenario, the latency
target for short requests are usually stricter than for long requests
due to their shorter execution time, as requests perceive the la-
tency target based on uninterrupted and isolated execution time.
This is why sequential preemption approaches without model split-
ting are inapplicable, as the latency of waiting for long requests is
substantial.

Evenly-sized model splitting is difficult. There are dozens
or hundreds of operators in the model. When dividing a model
with𝑀 operators into 𝑁 blocks, the number of candidates is𝐶𝑁−1

𝑀−1.
For example, dividing ResNet50 into 3 blocks results in 287,980
candidates, requiring over 80 hours for profiling all possibilities.

2.3 Greedy Preemption
The preemption with static priority is difficult to guarantee
QoS for all requests. In the realm of request preemption, existing
works [4, 10] adopt fixed priority schemes or approaches that handle
best-effort and real-time requests together. These methods, which
assign the static priority level to requests, are intrinsically unable
to guarantee a well-balanced QoS for all requests.

Conversely, assigning dynamic priority level to requests can offer
a more equitable distribution of service quality. Nonetheless, this
technique necessitates recalculating the priority level of all tasks
each time a new request arrives, aiming to achieve the optimal
preemption outcome. This process is exceedingly time-consuming
and often surpasses the processing time of the requests themselves.

To address this issue, we propose a greedy-based preemption
method that not only reduces the response ratio of the requests
but also substantially diminishes the time spent on preemption.
With a time complexity of O(n) in the worst case, this approach
presents a more efficient and scalable solution for managing request
preemption at the edge.

For combinatorial optimization problems, the abundance of avail-
able splitting candidates results in substantial search overheadwhen
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Figure 1: An example of multiple DLI requests scheduling with different preemption schemes.

(a) The relationship between position of cut points and splitting overhead. Splitting the model on the earlier operators can
incur a large splitting overhead.

(b) The relationship between position of cut points and standard deviation of block execution time. Splitting the model at
the beginning or last few operators will result in a larger standard deviation of block execution time.

Figure 2: The relationship of splitting overhead and standard deviation to position of cut points. The X-axis and Y-axis show
position of the first cut point and the second cut point.

employing heuristic methods or reinforcement learning approaches,
which often renders them unsuitable for DLI. However, by lever-
aging prior knowledge to accelerate the learning process, we can
enhance the feasibility of these methods. Guided by the observa-
tions obtained from analysis, the algorithm can efficiently explore
the solution space while avoiding the exhaustive search. Conse-
quently, we can use the genetic algorithm and significantly reduce
the search space, enabling us to identify effective splitting candi-
dates in a more practical and efficient manner for real-world DLI
requests.

2.4 Observations
We conducted a comprehensive analysis of deep learning models
and derived observations regarding the impact of position of cut
points on execution time and jitter:

The influence of position of cut points on execution time.
Figure 2(a) illustrates the relationship between position of cut points
and splitting overhead 2. A key finding from the Figure 2(a) is that
splitting the model on earlier operators leads to a larger splitting
overhead. This is because, after splitting the model, data trans-
mission between previously adjacent operators contributes to the
overhead. During the inference of the model, the volume of data

2Splitting overhead is the ratio of the additional execution time of the blocks to the
original model’s execution time.
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decreases with convolution and encoding, resulting in reduced data
transmission overhead.

Consequently, splitting closer to the end of the model yields a
smaller overhead and has a minimal impact on execution time.

The influence of position of cut points on jitter. Figure 2(b)
depicts the relationship between position of cut points and standard
deviation of block execution time. We use the standard deviation
as a measure of splitting evenness, or jitter; a smaller standard
deviation indicates a more even splitting. The figure reveals that
splitting the model at the beginning or the last few operators results
in uneven splitting, while splitting closer to the middle but slightly
towards the beginning yields a more even splitting outcome. This
is because the data volume is larger at the beginning of the model,
causing the operator execution time to be longer compared to later
operators.

As a result, after splitting, the execution time of the front block
with fewer operators is comparable to that of the back block con-
taining more operators, leading to a more even splitting, which
means less jitter.

2.5 Objectives and Challenges
Given the difficulties in splitting models based on operator execu-
tion time and the vast number of candidates, we must address the
following challenges:

• How to choose cut points for evenly-sized model split-
ting.We will investigate the relationship of execution time
and jitter to position and number of cut points , aiming to
split models evenly.

• How to preempt quickly to minimize latency. While
evenly-sized model splitting can decrease waiting latency
of requests, additional overhead during preemption is also
crucial. A high time complexity preemption algorithm may
increase latency, causing short requests to violate the latency
target due to extended preemption. Thus, a fast preemption
algorithm is necessary.

3 DESIGN
We introduce SPLIT, a DLI resource allocator designed to enhance
request QoS by reducing the latency violation rate and jitter. First,
we present an evaluation to understand the impact of position
of cut points on execution time and jitter. Then, we characterize
the effects of evenness and the number of model splits on waiting
latency of short requests. Finally, we propose an evenly-sized model
splitting method based on a genetic algorithm in §3.3 and a fast
greedy preemption algorithm in §3.4.

3.1 Learning the Impact of Cut Points on
Execution Time and Jitter from a
Large-Scale Evaluation.

Observations on the impact of position of cut points on execution
time and jitter (§2.4) provide inspiration for evenly-sized model
splitting. To analyze commonly used deep learning models and
learn this relationship across a wide range of operators as cut point
candidates, we carry out a large-scale evaluation on NVIDIA Jet-
son Nano. Specially, we evaluate 11 typical deep learning models

including CNN and Transformer from the model zoo of ONNX,
including following categories:

• Image classification. It includes VGG19, ResNet50, AlexNet,
SqueezeNetv1, ShuffleNet, DenseNet and GoogLeNet.

• Object detection. It includes YOLOv2 and EfficientNet.
• Text generation. It includes GPT-2.

We use ONNX Runtime [6] as the runtime framework. To profile
the impact of position of cut points on execution time and jitter, we
analyze and split the model using ONNX. Then we tune position of
cut points and collect the execution time to calculate the splitting
overhead and the standard deviation of block execution time, which
is shown in Figure 2.

Base on the observations, we first analyze the waiting latency
𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡 of a newly arrived request and characterize the impact
of model splitting options on execution time.

Assuming that a long model is split into 𝑛 blocks with execu-
tion time {𝑡1, 𝑡2, ..., 𝑡𝑛} and a short request arrives randomly at
(0, ∑𝑛

𝑖=1 𝑡𝑖 ) (1 ≤ 𝑖 ≤ 𝑛), the waiting latency 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡 can be
given by:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡 =

∫ 𝑡1
0 (𝑡1 − 𝑡)d𝑡 +∑𝑛

𝑗=2
∫ ∑𝑗

𝑖=1 𝑡𝑖∑𝑗−1
𝑖=1 𝑡𝑖

(∑𝑗

𝑖=1 𝑡𝑖 − 𝑡)d𝑡∑𝑛
𝑖=1 𝑡𝑖

=
1
2
·
∑𝑛
𝑖=1 𝑡

2
𝑖∑𝑛

𝑖=1 𝑡𝑖
=

1
2
· (𝜎

2

𝑡
+ 𝑡).

(1)

where 𝜎 denotes the standard deviation of the execution time
and 𝑡 represents the average execution time of blocks. The term∫ ∑𝑗

𝑖=1 𝑡𝑖∑𝑗−1
𝑖=1 𝑡𝑖

(∑𝑗

𝑖=1 𝑡𝑖−𝑡 )d𝑡∑𝑛
𝑖=1 𝑡𝑖

indicates the average waiting latency of the ar-
riving short request when the 𝑘th block is being executed. The
execution time {𝑡1, 𝑡2, ..., 𝑡𝑛} can be profiled within 1s since a re-
quest’s execution time is less than 100ms. As the number of blocks
increases, the average execution time of blocks decreases, so we use
the average execution time to represent the number of splits. Eq. 1
demonstrates that a high standard deviation can cause significant
waiting latency. For a given standard deviation, the relationship
between splitting overhead and average latency is hyperbolic, indi-
cating that an optimal number of splits exists and more blocks may
not be beneficial.

3.2 Guiding Model Splitting Using Genetic
Algorithms Based on Observations

Based on the observations derived from our analysis of deep learn-
ing models in § 2.4, we designed a genetic algorithm approach
to achieve evenly-sized model splitting, initialing population and
choosing offspring based on observations. Our observations inform
the development of this strategy in the following ways:

Position of cut points and execution time: As we observed
that splitting at early operators incurs a larger overhead, the genetic
algorithm is designed to prioritize choosing splitting position far
from the front of the model, where the data volume and transmis-
sion overhead are reduced. This approach ensures that the impact
of splitting on request execution time is minimized, leading to
improved performance.
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Position and jitter: Our observation that splitting closer to
the middle but slightly towards the beginning of the model results
in more even splitting outcomes informs the design of the fitness
function of the genetic algorithm. The fitness function aims to
minimize the standard deviation of block execution time, thereby
promoting splitting evenly. This optimization criterion guides the
evolution of the population in the genetic algorithm, encouraging
the selection of splitting solutions with more evenly distributed
execution time among blocks.

In light of these observations, we employ a genetic algorithm
with an appropriately designed fitness function and crossover strat-
egy, effectively exploring the search space for optimal splitting
solutions.

By leveraging our observations to inform the design of genetic
algorithm, we are able to identify splitting solutions that achieve a
balance between evenness and reduced execution time overhead,
thus optimizing the overall performance of DLI.

3.3 Evenly-sized Model Splitting Based on
Genetic Algorithm

We introduce a genetic algorithm-based model splitting method in
this work. Evenly-sized model splitting selects𝑚 − 1 cut points to
divide vanilla models into𝑚 blocks. Since waiting latency depends
on the evenness of blocks and the number of blocks (Eq. 1), the
fitness function of the genetic algorithm considers both evenness
and the number of blocks. We define the fitness function 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠

as:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = −1 · (𝑒
𝜎
𝑇
−1 + 𝑒

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑
𝑚

−1) (2)

where𝑚 denotes the number of blocks and 𝑇 represents the execu-
tion time of the vanilla model. Given the relationship between block
standard deviation and model splitting options as a black-box func-
tion, the genetic algorithm can achieve the desired model splitting
options. Here are the steps involved in the genetic algorithm:

• Generate an initial population of model splitting options
with randomly chosen cut points.

• Split the models and profile overhead and standard deviation
of blocks. Calculate the 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 of each population.

• Select the best model splitting options with the maximum
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 and create offspring using crossover probability; oth-
erwise, copy the parents as offspring.

• Mutate the latest offspring with a mutation probability.
• Retain a certain elite population based on the elite percentage
for the next generation.

• Repeat until reaching the number of generations or the result
remains unchanged for a certain number of iterations.

By leveraging our observations to inform the design of the ge-
netic algorithm, we are able to identify splitting solutions that
achieve a balance between evenness and splitting overhead, thus
optimizing the overall performance of DLI. Now we have now ob-
tained evenly-sized blocks with low overhead using the genetic
algorithm-based model splitting. In order to further guarantee the
QoS of requests, a fast preemption algorithm is required.

Limitation of evenly-sizedmodel splitting and elasticmodel
splitting in SPLIT. Although evenly-sized model splitting can
improve the QoS in most situations, it also introduces additional

splitting overhead. To address this, SPLIT employs an elastic model
splitting mechanism: under conditions of particularly high request
density, model splitting is temporarily disabled to avoid the im-
pact of the extra splitting overhead on QoS. Similarly, when an
excessive number of requests of the same type are present, split-
ting is also temporarily suspended. This is because requests of the
same type adhere to the FIFO principle, rendering splitting and
preemption unnecessary between them. The elastic model splitting
mechanism allows SPLIT to flexibly optimize task QoS based on the
distribution of incoming requests, striking a balance between the
benefits of splitting and the potential drawbacks of the associated
overhead. By dynamically adjusting its splitting strategy, SPLIT
is better equipped to ensure near-optimal QoS under a variety of
workload conditions.

3.4 Fast Greedy Preemption Method Based on
Response Ratio

Since the preemption algorithm is executed every time a request
arrives, it is called frequently. So, DLI in edge platforms often de-
mands low latency, making high time complexity preemption algo-
rithms infeasible. Considering that DLI requests typically complete
in milliseconds, a complex preemption algorithm may significantly
increase lock contention, resulting in higher latency.

We make two observations on preemption: (1) The request com-
pletion time depends on the end time of the last block. All blocks of
a higher priority request should preempt together (see Figure 3(b)),
or the request may suffer additional waiting latency caused by the
last block (Figure 3(a)). (2) Adjusting the execution order of neigh-
boring requests does not change their respective execution time, so
it does not impact other requests’ waiting time. For requests from
the same task, since they have identical execution time and QoS
requirements, the request arriving first should be executed first to
achieve a lower response ratio.

Based on these observations, we introduce a greedy preemption
algorithm based on response ratio. To evaluate the impact of pre-
emption on QoS, we define the response ratio 𝑅𝑅 of each request
when a new request is appended to the request queue:

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡𝑒𝑑 + 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡𝑖𝑛𝑔

𝑅𝑅 =
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡 + 𝑡𝑒𝑥𝑡

𝑡𝑒𝑥𝑡
=

𝑡𝑒𝑡𝑒

𝑡𝑒𝑥𝑡

(3)

where 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡𝑒𝑑 denotes the waiting latency of the request,
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡𝑖𝑛𝑔 represents the predicted latency the request will
continue to wait, 𝑡𝑒𝑥𝑡 is the request’s execution time, and 𝑡𝑒𝑡𝑒 refers
to the end-to-end latency, and the 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑎𝑖𝑡𝑖𝑛𝑔 is the sum of 𝑡𝑒𝑥𝑡
of all previous requests.

(a) The partial preemption. (b) The full preemption.

Figure 3: Comparison of between partial preemption and full
preemption. The partial preemption produces straggler and
increases total latency of request A. The full preemption can
reduce latency of request B.
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We conclude the following characteristics for block-level pre-
emption:

• All blocks of one request executing preemption together is
better than partial preemption.

• Swapping the order of two neighbors does not influence
other requests.

• First-Input-First-Output (FIFO) for requests from the same
task.

• The total latency of a request is related to its position in the
request queue.

Based on these conclusions, we propose a fast greedy preemption
algorithm based on response ratio to achieve near-optimal pre-
emption at microsecond-scale. Algorithm 13 describes the greedy
preemption algorithm. We find that, for 𝑛 requests with 𝑘 mod-
els split into 𝑚 blocks on average, SPLIT has a worst-case time
complexity of 𝑂 (𝑛) and an average time complexity of 𝑂 (𝑘).

Preemption can only be executed between neighbors since swap-
ping the order of two neighbors does not influence others. They
only exchange the order when it can reach a lower response ratio
and repeat it until:

• No requests are ahead, meaning the request has the highest
priority.

• Both requests are from the same task.
• Exchanging cannot reduce the average response ratio of the
two requests.

4 IMPLEMENTATION
We implemented and deployed SPLIT on NVIDIA Jetson Nano
with CUDA. The architecture of SPLIT is depicted in Figure 4. Our
implementation consists of around 9000 lines of C++ code. We use
ONNX Runtime [6] as the deep learning runtime framework and
convert models to .𝑜𝑛𝑛𝑥 format to provide support for most deep
learning frameworks.

Figure 4: System workflow.

3Inspired by PREMA [4], we define the latency target, the maximum allowed end-to-end
latency, as 𝛼 × 𝐸𝑥𝑡 (𝑡𝑖 ) .)

Algorithm 1 Greedy preemption
Input:

• 𝑇 :Inference requests with 𝑁 requests
• 𝑡𝑛𝑒𝑤 :New-arrived request
• 𝑅(𝑡𝑖 , 𝑙):Response ratio of request 𝑡𝑖 with end-to-end latency
𝑙

• 𝐸𝑥𝑡 (𝑡𝑖 ):Execution time of 𝑡𝑖
• 𝐸𝑥𝑡𝑙𝑒 𝑓 𝑡 (𝑡𝑖 ):Left executing latency of 𝑡𝑖
• 𝑆𝑡𝑎𝑟𝑡 (𝑡):Time the request 𝑡 starts to be executed

Output: 𝑇
Function ResponseRatio(𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔, 𝑡𝑖 ,𝑇 )
1: 𝑙𝑤𝑎𝑖𝑡𝑒𝑑 ← 𝑐𝑙𝑜𝑐𝑘 () − 𝑆𝑡𝑎𝑟𝑡 (𝑡𝑖 )
2: 𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝛼 × 𝐸𝑥𝑡 (𝑡𝑖 )
3: return 𝑙𝑤𝑎𝑖𝑡𝑒𝑑+𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔+𝐸𝑥𝑡𝑙𝑒 𝑓 𝑡 (𝑡𝑖 )

𝑇𝑎𝑟𝑔𝑒𝑡

Function Preemption(𝑇, 𝑡𝑛𝑒𝑤 )
4: 𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔 =

∑𝑁
𝑛=1 𝐸𝑥𝑡 (𝑡𝑛)

5: for 𝑖 requests in 1, 2, ..., 𝑁 do
6: if 𝑡𝑦𝑝𝑒 (𝑡𝑛𝑒𝑤) = 𝑡𝑦𝑝𝑒 (𝑡𝑖 ) then
7: return 𝑇

8: end if
9: 𝑅𝑅𝑏𝑎𝑐𝑘𝑡𝑛𝑒𝑤

← 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑅𝑎𝑡𝑖𝑜 (𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔, 𝑡𝑛𝑒𝑤 ,𝑇 )
10: 𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔 ← 𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔 − 𝐸𝑥𝑡𝑙𝑒 𝑓 𝑡 (𝑡𝑖 )
11: 𝑅𝑅

𝑓 𝑟𝑜𝑛𝑡
𝑡𝑛𝑒𝑤

← 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑅𝑎𝑡𝑖𝑜 (𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔, 𝑡𝑛𝑒𝑤 ,𝑇 )
12: 𝑅𝑅𝑏𝑎𝑐𝑘𝑡𝑖

← 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑅𝑎𝑡𝑖𝑜 (𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔 + 𝐸𝑥𝑡𝑙𝑒 𝑓 𝑡 (𝑡𝑖 ), 𝑡𝑖 ,𝑇 )
13: 𝑅𝑅

𝑓 𝑟𝑜𝑛𝑡
𝑡𝑖

← 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑅𝑎𝑡𝑖𝑜 (𝑙𝑤𝑎𝑖𝑡𝑖𝑛𝑔, 𝑡𝑖 ,𝑇 )
14: if 𝑅𝑅 𝑓 𝑟𝑜𝑛𝑡

𝑡𝑛𝑒𝑤
− 𝑅𝑅𝑏𝑎𝑐𝑘𝑡𝑛𝑒𝑤

≥ 𝑅𝑅
𝑓 𝑟𝑜𝑛𝑡
𝑡𝑖

− 𝑅𝑅𝑏𝑎𝑐𝑘𝑡𝑖
then

15: 𝑇 .insert(𝑡𝑖 , 𝑡𝑛𝑒𝑤 )
16: return 𝑇

17: end if
18: end for
19: 𝑇 .insert(𝑇 .𝑒𝑛𝑑, 𝑡𝑛𝑒𝑤 )
20: return 𝑇

4.1 SystemWorkflow
Figure 4 illustrates the system workflow of SPLIT: (1) Users deploy
various tasks with multiple deep learning models, each generating
requests independently. (2) SPLIT accepts models from popular
deep learning frameworks (e.g., TensorFlow [1], PyTorch [26], Pad-
dlePaddle [19]) and converts them to .𝑜𝑛𝑛𝑥 format. (3) SPLIT divides
models into evenly-sized blocks based on the genetic algorithm and
stores the blocks as .𝑜𝑛𝑛𝑥 files. (4) SPLIT deploys models according
to the splitting results and preempts based on the greedy algorithm.
(5) SPLIT returns inference results to the user.

In particular, processes (1), (2), (4), and (5) are online, while pro-
cess (3) is offline. As models deployed on the edge remain constant,
lengthy models only need to be split once.

4.2 System Components
Responder accepts user requests using the RPC protocol and ap-
pends them to the request queue. It reads the inference result from
the output queue and replies to users. To minimize waiting latency,
the responder runs on a separate thread and secures asynchronous
r/w with a thread lock. Request wrapper analyzes computational
graphs and wraps requests using the given deep learning runtime
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Table 1: Evaluated deep learning models.

Model Operators Domain Latency(ms) Type

YOLOv2 84 Object Detection 10.8 Short
GoogLeNet 142 Image Classification 13.2 Short
ResNet50 122 Image Classification 28.35 Long
VGG19 44 Image Classification 67.5 Long
GPT-2 2534 Text Generation 20.4 Short

framework. Request unwrapper converts model files to .𝑜𝑛𝑛𝑥 for-
mat. Deployment manager deploys the blocks on the processor,
executing each request as a separate thread to ensure resource effi-
ciency. Token scheduler orders all requests in the request queue
based on the greedy algorithm. Token assigner assigns the token
to the highest priority request for execution. Responder collects
the inference result and responds to users.

5 EVALUATION
In this section, we assess the effectiveness of SPLIT by addressing
the following questions:

• Can evenly-sized model splitting divide various models into
evenly-sized blocks with minimal splitting overhead?

• Can SPLIT improve QoS by reducing the latency violation
rate?

• Can SPLIT reduce jitter by reducing the standard deviation
of block execution time in various scenarios?

5.1 Experimental Setup
Benchmarks. We create various DLI scenarios with the follow-
ing deep learning models: YOLOv2 [28], GoogLeNet, ResNet50,
VGG19, and GPT-2 [27]. The evaluated models, including image
classification, object detection, and text generation, exhibit differ-
ent execution time, as shown in Table 1. Though some models
belong to the same application domain, their execution time and
performance differ due to distinct computing graph topologies and
operators. Consequently, they are deployed and used independently
for different requests.
Table 2: Scenarios that simulate various DLI applications
running on an edge system.

Name Average arrival interval(𝜆) Load

Scenario1 160ms LowScenario2 150ms
Scenario3 140ms ↓Scenario4 130ms
Scenario5 120ms HighScenario6 110ms

Workload. Real-world request generation scenarios are crucial
for evaluating computing resource allocation methods. However,
research about DLI on a single edge computing resource is still
nascent, resulting in few publicly available datasets for experimen-
tal purposes. Thus, we generate random request queries using Pois-
son distribution to emulate real-world request generation scenarios,
inspired by prior works [2, 30, 35]. The 𝜆 of the Poisson distribu-
tion represents the average request arrival interval. For instance,
𝜆 = 150 indicates an average arrival interval of 150𝑚𝑠 . Based on

hardware tolerance4, we evaluate SPLIT and other works under
six scenarios, detailed in Table 2. The "Average arrival interval(𝜆)"
column denotes 𝜆 for each scenario’s corresponding requests. The
total number of requests is set to 1000.

Testbed. Our experiments utilize an NVIDIA Jetson Nano. The
software environment consists of ONNXRuntime 1.12.1 andUbuntu
18.04.

5.2 Metrics
We employ the following metrics to gauge SPLIT’s effectiveness:

The latency violation rate. The unique latency target charac-
terize each request and serve as vital QoS metrics. As discussed,
requests perceive QoS based on uninterrupted and isolated exe-
cution time (§2.1). We define the latency target as 𝛼 × 𝐸𝑥𝑡 (𝑡𝑖 ) in
§3.4. If a request’s response ratio exceeds 𝛼 , it violates the latency
target. Since the request’s latency target must be greater than its
execution time, we sweep 𝛼 from 2 to 20 and measure the fraction
of latency-violated requests as a function.

Standard deviation of block execution time. This metric
measures inference jitter by evaluating data dispersion, which is
essential for assessing request stability.

5.3 Baselines
We compare SPLIT with typical DLI resource allocation methods.
ClockWork [9] sequentially executes DLI requests on the GPU with
static priority. PREMA [4] is a temporal multi-requesting algorithm
allowing requests to preempt with passive priority. Runtime-aware
approach (RT-A) [34] concurrently runs all requests on the same
GPU through multiple GPU streams, splitting and aligning models
based on resource requirement of operators.

(a) Standard deviation of optimal
model splitting option of each genera-
tion.

(b) Overhead of the optimal model
splitting option of each generation.

Figure 5: The minimum standard deviation and its overhead
of each generation.

5.4 Effectiveness of Evenly-sized Model
Splitting Based on Genetic Algorithm

This experiment evaluates if evenly-sized model splitting can divide
long models into evenly-sized blocks and provide optimal model
splitting options for ResNet50 and VGG19 with varying numbers
of blocks.

Figure 5 depicts the standard deviation and overhead of model
splitting options in each generation with different numbers of
4Shorter intervals (e.g., 90ms) result in a growing request queue and following requests
will always violate the latency target. As for longer intervals (e.g., 200ms), requests
can be handled sequentially and no scheduling strategy is required.
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Table 3: Optimal model splitting options for different num-
bers of blocks.

Model Blocks Std. Deviation Overhead Range(Percentage)

ResNet50
2 0.62 15.4% 5.69%
3 1.33 42.4% 14.70%
4 2 50.3% 23.40%

VGG19
2 0.02 19.8% 0.09%
3 1.1 18.1% 5.37%
4 5.03 27.6% 24.8%

blocks (RES-1 means splitting ResNet50 into 2 blocks). Figure 5(a)
demonstrates that nearly all models obtain optimal model splitting
options within 12 generations. After 15 generations, all models find
the optimal options with minimal standard deviation to split models
evenly. Figure 5(b) shows the overhead reduction during the search,
decreasing as standard deviation decreases, with final overheads
lower than the initial values. Table 3 presents the optimal model
splitting options for different numbers of model splits. According
to Eq. 1, the optimal split numbers for ResNet50 and VGG19 are
2 and 3 for the minimum splitting overhead, respectively. Due to
the discrete execution time of operators, increasing the number of
model splits raises the standard deviation and may result in higher
overhead.

5.5 Effectiveness of SPLIT in Various Scenarios
We assess latency and jitter of inference using the latency violation
rate and standard deviation of execution time, two crucial QoS
factors. In this experiment, we compare SPLIT with other baselines
across six scenarios in Table 2.

Effectiveness in reducing the latency violation rate of re-
quests. Figure 6 displays the latency violation rate of SPLIT and
baselines in different scenarios. SPLIT significantly reduces the
latency violation rate to below 10% beyond an latency target of
𝛼 = 4, a marked improvement over the 26% latency violation under
RT-A. SPLIT lowers the latency violation rate in all six scenarios.

Effectiveness in reducing jitter.We employ the standard de-
viation of block execution time to measure inference jitter. Figure 7
showcases the standard deviation of execution time for SPLIT and
baselines across various scenarios. For low workloads, such as sce-
nario 1, SPLIT reduces the standard deviation of short requests by
55.3%, 46.8%, and 68.9% compared to ClockWork [9], PREMA [4],
and RT-A [34]. For high workloads, the reductions are 56.0%, 50.3%,
and 69.3%. Model splitting enhances the preemption capability of
short requests like YOLOv2, GPT-2, and GoogLeNet. SPLIT achieves
the best stability compared to related works, though it sacrifices
stability for longer requests like ResNet50 and VGG19. However, the
standard deviation of long requests is still slightly lower than short
requests, indicating that the stability of all requests is approximately
at the same level.

6 DISCUSSION
Overhead of model splitting. We observe that the total execu-
tion time of all blocks is greater than that of the vanilla model.
Model splitting options significantly influence the splitting over-
head, which is strongly correlated with the intermediate input and
output data at the splitting boundaries. The considerable splitting
overhead also explains the difficulty in accurately predicting model
execution time based on operators. Approaches like REEF [10],

which split requests based on GPU kernel, can alleviate this prob-
lem at the cost of higher hardware dependency. In contrast, SPLIT
is more flexible and benefits from its insensitivity to hardware.

Predictability ofDLI latency. Latency predictability is a crucial
concern for DLI in edge platforms, especially in real-time systems.
However, latency becomes unstable when various DLI requests run
concurrently on a single computing resource due to hardware inter-
actions. SPLIT infers requests sequentially to avoid interactions and
achieve predictable latency. This approach may appear to sacrifice
spatial resource utilization, but it still outperforms the concurrent
approach(RT-A), as demonstrated in §5.5.

Limitations of model splitting. SPLIT’s model splitting sup-
ports CNNs and Transformer networks due to their static DAG
structure and the static knowledge of the vanilla model’s execution
time. However, the execution time of RNNs depends on the input
data size, rendering them unsuitable for offline splitting.

7 RELATEDWORK
Numerous works have been proposed to optimize resource allo-
cation for DLI systems, primarily focusing on throughput or total
resource utilization. SPLIT, however, emphasizes the QoS of each
task.

Task-level resource allocation. These approaches treat a task
as a resource management unit and are insensitive to the model
structure details of deep learning models, simplifying schedul-
ing [11, 15]. ClockWork [9] employs FCFS task-level scheduling,
dropping tasks predicted to be stragglers upon arrival. However,
this is unsuitable for tasks with random arrival times. PREMA [4]
combines offline records and online token-based task scheduling
for predictive multi-task scheduling. Such approaches are suitable
for cluster-based DLI but have limited impact on single computing
resources with coarse-grained tasks.

Graph-level resource allocation. Compared to task-level al-
location, graph-level allocation allows for more fine-grained and
flexible allocations for various models [12, 13, 17]. Band [16] splits
deep learning models into operators and allocates resources ac-
cording to affinity between the operator and hardware. EOP [32]
partitions operators based on operator execution estimation using
three performance variation patterns. Runtime-aware [34] merges
multiple models into a single model with parallel branches. Al-
though these approaches can improve throughput, short requests
may experience increased latency as they wait for longer requests
to complete, negatively impacting QoS.

Kernel-level resource allocation.Works in this category im-
prove task inference efficiency through thread blocking, loop tiling,
and other techniques. For instance, REEF [10] employs thread block-
ing for microsecond-scale kernel preemption and controlled concur-
rent execution. [31] blocks new threads to passively preempt GPU
streaming multiprocessors. TVM [3] is a kernel-level auto-tuning
framework optimizing configurations to maximize GPU utilization.
SPLIT can be integrated with these approaches to further enhance
performance.

Resource-level management. With the emergence of fine-
grained computing resource sharing and partitioning techniques
like multi-process services (MPS [25]) and multi-streams, many
works aim to manage fine-grained resources and avoid task interac-
tions [18, 23]. GSLICE [7] builds on MPS to enable controlled spatial

612



SPLIT: QoS-Aware DNN Inference on Shared GPU via Evenly-Sized Model Splitting ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

(d) Scenario 4. (e) Scenario 5. (f) Scenario 6.

Figure 6: The latency violation rate for all requests as a function of latency target (normalized to execution time) on the X-axis.

(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

(d) Scenario 4. (e) Scenario 5. (f) Scenario 6.

Figure 7: Standard deviation of block execution time of each model in various scenarios.

GPU sharing across multiple inference function models, using a
self-learning method to dynamically adjust GPU resource allocation
ratios for workloads. Planaria [8] dynamically allocates computing
resources with a deadline-aware scheduler. SPLIT could leverage
these optimizations to improve resource utilization.

8 CONCLUSION
This paper presents SPLIT, a QoS-aware DNN inference system
which splits models into evenly-sized blocks to improve QoS by
reducing the latency violation rate and jitter of each request. We
propose an approach that splits models into evenly-sized blocks
based on genetic algorithm to reduce the overhead of requests. Next,
we propose the latency violation rate and jitter to evaluate QoS from
the perspective of requests. Finally, we use greedy preemption to
minimize response ratio of requests to improve QoS at microsecond-
scale. Experiments show that SPLIT can reduce response ratio of
requests by up to 43% and jitter by up to 69.3%.
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