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ABSTRACT

Public clouds provide a bewildering choice of configurations
for Deep Learning (DL) models, and the choice of configura-
tion will significantly impact the performance and budget.
However, it is an obvious challenge to recommend a near-
optimal configuration for a particular DL model from a wide
range of candidates. The huge search overhead of finding
such a configuration is the notorious cold start problem in
state-of-the-art efforts, and this problem becomes more se-
vere when they are faced with unseen DL models.

In this paper, we present Falcon, a novel configuration rec-
ommender system that can quickly adapt to unseen DL mod-
els. Through a large-scale evaluation, we find that there are
some Key Operators (KOPs) that can be used to estimate the
performance of DL models, and their resource sensitivity can
be represented by four typical Key Operator Resource Curves
(KOP-RCs). This work can effectively alleviate the cold start
problem, because an unseen DL model can be characterized
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by its KOPs and corresponding KOP-RCs, and this charac-
terization can be constructed as a tree structure in which
near-optimal configurations can be searched quickly through
a combination of Monte Carlo Tree Search and Bayesian op-
timization (MCTS-BO). Experiments show that Falcon can
effectively reduce the search overhead for unseen DL models
by up to 80% compared to state-of-the-art efforts.
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1 INTRODUCTION

With the rapid advancement of Deep Learning (DL) technolo-
gies, more and more DL models are serving on public clouds
to provide DL inference services (e.g., computer vision [39],
natural language processing [50], speech recognition [41]).
Deploying such services must deal with complex configura-
tions, including runtime configurations (e.g., batch size) and
resource configurations (e.g., GPU type, GPU memory), and
the configuration of DL models may involve over 1,000 com-
position candidates in today’s public clouds, such as Amazon
EC2 [3]. Therefore, it is crucial to recommend near-optimal
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configurations in such a scenario. As shown in Figure 1, an
optimal configuration can result in up to 8x performance
improvement and over 60% budget reduction. In this context,
unearthing near-optimal configurations for DL inference
services from a wide range of candidates through trials !
presents both an opportunity and a great challenge.

To address this challenge, existing configuration recom-
mender (CR) systems, such as Morphling [43] and HeterBO
[48], make important contributions by reusing historical
data from previous DL models to improve the configuration
search of other models, thus maximizing the performance
per budget. However, they both require considerable search
overhead (trials) to find near-optimal configurations. This is
the notorious cold start problem of CR systems, which is
further exacerbated when they are faced with unseen DL
models 2. As shown in Figure 2, Morphling takes 10 trials
and 2.5 hours ? to find a near-optimal configuration for a
“seen” model 4, but requires 30 trials and 7.5 hours for an
unseen one.

According to our observation, Morphling can only quickly
adapt to “seen” DL models with high model-level similar-
ity, but performs inefficiently for other DL models (see Sec-
tion 2.1). We further analyzed those DL models with consider-
able similarity from the view of operators [7] and concluded
that operators are the root cause of model-level similarity
and they are better suited to describe the performance of DL
models (see Section 2.3).

Guided by these findings, this paper presents Falcon, a
novel CR system that can quickly adapt to unseen DL models.
We believe our work makes the following advancements:

e We managed to alleviate the cold start problem from
a new perspective at the operator level instead of the
model level. There are two key insights to support this
shift: (a) how to find the Key Operators (KOPs) that
have a dominant impact on the performance of DL
models, and (b) how to learn the resource sensitivity
curves of KOPs, or the Key Operator Resource Curves
(KOP-RCs), to navigate the search for different models
in a large search space. To this end, we conducted
a large-scale evaluation of 30 typical DL models on
Amazon EC2 to learn KOPs and KOP-RCs.

e We design a novel fast adaptive search approach in
Falcon, which combines Monte Carlos Tree Search

IThe trial is a stress test of the target DL inference model in a certain
configuration to measure its performance.

%In this paper, new DL models and model variants developed by users are
two main sources of unseen DL models, such as ResNet variants ResNet-101
and ResNet-152.

3Each trial takes around 15 minutes, including launching containers, stress
testing, and results collection.

4The “seen” model in this paper implies that it has similar resource sensi-
tivity and configuration preferences to historical DL models.
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Figure 1: Impact of serving DL models with different con-
figurations: (a) with varying batch sizes, the performance is
measured by requests per second, or RPS, and then normalized
by the highest RPS to obtain norm.RPS, and (b) with varying
GPU types.

and Bayesian Optimization (MCTS-BO), effectively em-
ploying the KOPs and KOP-RCs of DL models, thus
we can quickly locate near-optimal configurations for
unseen DL models.

e Experiments show that Falcon can effectively find near-
optimal configurations, with up to 80% reduction in
search overhead for unseen DL models compared to
state-of-the-art efforts. The search trials can be signifi-
cantly reduced from dozens to an average of six.

2 MOTIVATION

In this section, we first discuss the limitation of existing CR
systems. Next, we explain that serving unseen DL models is



Serving Unseen Deep Learning Models with Near-Optimal Configurations

—#— Unseen DL Model (GRU)-Norm.(RPS/Budget)
~||—®@— Seen DL Model (ResNet-101)-Norm.(RPS/Budget)
[ Unseen DL Model (GRU)-Wall-Clock Time

[l Seen DL Model (ResNet-101)-Wall-Clock Time:

= 1.0

Norm.(RPS/Budge
Wall-Clock Time (hours)

e

. Each trial takes 15 minutes

T T T T T 0
0 5 10 15 20 25 30 35

Trials (#)

Figure 2: Search overhead for a “seen” DL model (ResNet-
101) and an unseen DL model (GRU) in Morphling. The X-
axis shows the number of trials. The left Y-axis shows the
normalized performance per budget, or norm.(RPS/Budget).
The right Y-axis shows the wall-clock time of the search.

a common requirement. After that, we show two important
observations of DL models and operators. Finally, we present
our expected improvements and discuss the challenges of
achieving them.

2.1 Limitation of Existing CR Systems

Existing CR systems require considerable search overhead
to find a near-optimal configuration, especially for unseen
DL models, mainly because they are based on the model-
level similarity and work as follows: (a) In the offline phase,
existing CR systems [43, 45, 50] run trials with different con-
figurations for diverse DL models to collect data, and then
use statistical or machine learning techniques to learn model-
level resource sensitivity (e.g., model-level resource sensi-
tivity curves in Morphling). (b) In the online phase, when
the target DL model is similar to existing DL models, the
CR system can quickly adapt it by reusing the optimal con-
figurations in existing data and searching for those nearby
configurations based on probability theory (e.g., Bayesian
optimization). Otherwise, in the worst case, the CR system
must repeat the offline trial process for the target model to
improve the search results.

Based on the above, we tested Morphling, a representative
CR system. Figure 2 shows the wall-clock time required for
Morphling to search for a near-optimal configuration, and
the results show that it takes 7.5 hours for an unseen DL
model (GRU) that is not similar to models learned offline.
As a comparison, it takes only 2.5 hours for a “seen” DL
model (ResNet-101). This implies Morphling has a severe
cold start problem for unseen DL models, and this problem
is common because our experiments (Figure 12) show that
for Morphling, 40% of our tested DL models take 7.5 hours
to get a near-optimal configuration.
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Figure 3: Statistics of DL models and model variants on
TensorFlow hub.

2.2 Serving Unseen DL Models is a
Common Requirement

Today, unseen models are usually derived from user devel-
oped models and model variants. The main purposes of
developing model variants include: improving model ac-
curacy [35, 36], improving performance [6, 30], reducing
resource consumption [12, 13], etc.

We have analyzed 1,200+ DL models and model variants
on TensorFlow hub [37], and those model variants can be
divided into two categories: (a) Changing the number of
blocks > [12]. These model variants weigh the accuracy and
resource consumption of the model to suit different applica-
tion scenarios. For example, ResNet-152 is one of the variants
of the model ResNet, which has more blocks, deeper networks,
and also requires more resources. (b) Optimizing block struc-
ture [35]. The optimized block structure usually has better
accuracy and lower resource consumption. For example, In-
ception V4 combines the residual network structure of ResNet
into blocks, which was not present in previous versions of
Inception (v3/v2/v1).

Figure 3 shows part of the statistics of model variants
on TensorFlow hub, which indicates a great variety of mod-
els. Based on the above analysis, the CR systems have to
frequently serve unseen DL models and model variants de-
veloped by users with different resource sensitivity and con-
figuration requirements.

2.3 Observations

Falcon presents a new perspective to alleviate the cold start
problem by taking full advantage of operators. Unlike DL
models which are highly variable, DL operators are rela-
tively fixed [28]. In this context, we present a comprehensive
analysis of typical DL models, various operators and diverse
configurations, and come up with the following two impor-
tant observations.

5The block is a few stacked layers in a DL model, such as the Inception block
and ResNet block.
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Figure 5: KOP-RCs in the configuration-performance relationship. The X and Y axis show two different configurations. The
Z-axis shows the performance per budget, which is evaluated by norm.(RPS/Budget).

Key Operators. We conduct comprehensive tests on all
types of operators in commonly used DL models to inves-
tigate the performance relationships between DL models
and operators. An important observation is that the Key Op-
erators (KOPs) in the DL model take up most of the GPU
computation time and the GPU memory .

Figure 4 shows the GPU computation time (the Y-axis) and
GPU memory utilization (red boxes) of operators in different
DL models. The results show that the conv2d operator is the
only KOP of most CNN and GAN models, which occupies
more than 80% GPU computation time and over 70% GPU
memory utilization in average. Meanwhile, RNN, Bert and
Transformer have multiple KOPs (Section 3.1 evaluates KOPs
by thresholds).

Based on the above observations, we can conclude that
KOPs can be used to estimate the performance of DL models.

%In terms of GPU resource usage, one can consider two high-level resources:
(a) GPU computation time and (b) GPU memory.

This means that if we can find near-optimal configurations
for KOPs, we can at least narrow the search space based
on these configurations. This provides us a neat shortcut to
alleviating the cold start problem, i.e., identifying KOPs for
an unseen DL model after its first run and navigating the
search direction based on pre-prepared resource sensitivity
of KOPs.

Key Operator Resource Curves. To further investigate
the resource sensitivity of operators and how their resource
sensitivity can help navigate the space of overall combined
configuration search, we evaluate KOPs with different con-
figurations and analyze their performance.

Figure 5 presents some of the results showing that the
configuration-performance relationships of KOPs can be cat-
egorized into four types of resource sensitivity curves, or Key
Operator Resource Curves (KOP-RCs): slope, convex, concave
and plane. For instance, all plots in Figure 5(a) conform to the
slope curve because the normalized performance per budget
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(the Z-axis) is mainly determined by one kind of resource
configuration, which means that the search needs to test
that resource first, while needing to avoid searching in bad
regions with low norm.(RPS/Budget). In addition, there are
some resources that match the convex and concave curves
shown in Figure 5(b) and Figure 5(c), and we need to con-
figure them simultaneously to locate good search regions.
In contrast, the plane curve (Figure 5(d)) represents some
configurations that have negligible impact on performance
and should be filtered out before searching.

Based on the above observations, we can conclude that
KOP-RCs can not only greatly reduce the search space, but
also help us to divide the search space into good and bad
search regions. This can help us to efficiently navigate the
search for unseen DL models in a large search space.

2.4 Improvements and Challenges

In a complex environment with 1,000+ configuration candi-
dates and new models being developed frequently, we believe
that a good CR system needs to have the ability to quickly
adapt to unseen DL models. Unfortunately, existing CR sys-
tems suffer from the cold start problem due to the limitation
of model-level similarity. To address this problem, we analyze
a wide range of DL models, operators and configurations,
and come up with two important observations: KOPs and
KOP-RCs, which give us a hopeful solution to alleviate the
cold start problem. However, we have to face at least two
main challenges:

e Although DL models have been abstracted to KOPs
and KOP-RCs, the similarities between them remain
to be explored. Especially for those DL models that
consist of multiple KOPs.

o Effective search based on KOPs and KOP-RCs is still
very difficult because we need not only to divide the
search space into good and bad regions, but also to
avoid continuous search in bad regions.

3 DESIGN

In this section, we first show our large-scale evaluation on
Amazon EC2 to learn KOPs and KOP-RCs. Next, we construct
trees to represent KOPs and divide the search space into good
and bad search regions according to KOP-RCs. After that,
we show how we quickly adapt to unseen DL models, and
discuss how MCTS-BO alleviates the cold start problem.

3.1 Learning KOPs and KOP-RCs from a
Large-Scale Evaluation

Observations on KOPs and KOP-RCs (see Section 2.3) provide

inspiration for alleviating the cold start problem for unseen

DL models. To analyze KOPs for commonly used DL models

and learn the KOP-RCs across a wide range of configuration
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candidates, we carry out a large-scale evaluation on Amazon
EC2. Specifically, we evaluate 30 typical DL models from
CNN, RNN, Bert, Transformer, and GAN from TensorFlow
hub, including the following categories:

e Computer vision. It includes VGG, ResNet, YOLO,
DenseNet, etc.

e Natural language process. It includes LSTM, GRU,
Bert, etc.

e Generative adversarial network. It includes DC-
GAN, WG-AN, SGAN, etc.

¢ Recommend system. It includes NCF, DCN, DRN,
etc.

We prepare the runtime environment for DL models by
renting GPUs instances (e.g., P2.xlarge) on Amazon EC2. To
simulate a tunable configuration environment in these GPU
instances, we deploy containers [25] as the resource control
panel and tune the following configuration knobs:

¢ Runtime configuration knobs. We mainly consider
the batch size as the runtime configuration knob, be-
cause it can profoundly impact the performance of DL
models [28].

¢ Resource configuration knobs. These configuration
knobs can be tuned when we deploy DL models on
public clouds. They include GPU type, GPU memory,
CPU cores, CPU L3 cache, RAM, GPU power ’, disk
speed, disk size, network speed, etc.

To profile the KOPs and KOP-RCs of a given DL model,
we first analyze its operators using TVM [7]. Then, we run
the DL model in a sandbox ® environment and evaluate the
GPU computation time and GPU memory of each operator
through program instrumentation, and use these two metrics
to identify KOPs. After that, we tune the configuration knobs
to profile the KOP-RCs (as shown in Figure 5) and collect
norm.(RPS/Budget) data. Concretely, we make the following
efforts to better profile KOPs and KOP-RCs:

e Identifying KOPs for a given DL model. We use
TVM to analyze the operator composition for a given
DL model and set thresholds for the GPU computation
time and GPU memory utilization of operators. In this
way, we can identify the KOPs for a given model. To
verify the effectiveness of the threshold settings, we
design an experiment in Section 5.3.

¢ Pruning redundant configurations in KOP-RCs.
We use Principal Component Analysis (PCA) [32] to
prune configurations that have negligible impact on
norm.(RPS/Budget), such as configurations in the plane

"In this paper, we tune the percentage of power supplied to the GPU. For
example, Tesla V100 is rated at 250 watts, and the 50% power supply is 125
waltts.

8The sandbox environment satisfies resource requirements of the tested DL
model.
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Table 1: Key configurations evaluated by PCA.

Configuration
CPU cores

Description
For DL inference, CPU is responsible for data
processing and I/O. Recent studies [28, 43]
show that adding more CPU cores to a serv-
ing DL model enables a higher degree of par-
allelism for data processing and I/O. For most
inference services, the RPS improvement di-
minishes with the increase of CPU cores.
To run a DL inference service, there is a min-
imum requirement of GPU memory to fully
load the serving model [50]. Further increas-
ing GPU memory allows it to serve larger
request batches with higher RPS. However,
when we consider both RPS and budget, it is
difficult to strike a balance between them.
There are various types of GPU dedicated
to DL inference services, and their ideal use
cases are different [4]. For instance, ideal use
cases for NVIDIA T4 include machine learn-
ing and graphics-intensive DL models with
better RPS.
For DL inference, system throughput (RPS)
can be increased by setting an appropriate
batch size. In particular, configuring a large
batch size is not always beneficial [28, 43], as
it may decrease statistical efficiency.
Recent studies [16, 23] set power caps for DL
services to keep peak power consumption be-
low a given power budget, and they also illus-
trated that GPU power can impact the RPS of
DL training and inference services.

GPU memory

GPU type

Batch size

GPU power

resource curves in Figure 5(d). Specifically, we use the
principal component feature matrix to do dimension-
ality reduction on the sample matrix, and then use the
transpose of the feature matrix to reverse back to the
original features. By comparing the reversed feature
matrix with the sample matrix, we can evaluate the
impact of the configurations on the performance. The
configurations with larger impact have a high correla-
tion with the performance, while the configurations
with smaller impact have almost no correlation with
the performance. After the above steps, we can prune
redundant configurations in KOP-RCs. Table 1 summa-
rizes key configurations that can significantly impact
norm.(RPS/Budget) in our dataset, and we evaluate the
parameter setting of PCA in Section 5.3.

Finally, we prepare the offline dataset for KOPs and KOP-
RCs. This dataset includes the performance and resource
sensitivity information for KOPs and KOP-RCs to navigate
the search for other DL models in a large search space.

Yuewen Wu and Heng Wu et al.
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3.2 Constructing Trees to Represent KOPs
and KOP-RCs

Before the online search phase, we need to construct a data
structure to represent the resource sensitivity in the offline
dataset. This process needs to achieve two goals: (a) to rep-
resent the complex relationship between DL models, KOPs,
and KOP-RCs, and (b) to partition a large search space into
good and bad regions, enabling the online search phase to
quickly guide the search in good regions for unseen models.

We choose the tree model because it has been widely used
to solve the black-box search problem [34, 46, 47]. It can
divide the search space into small search regions, which has
the potential to achieve fast and accurate search in a very
large search space.

First, we construct trees for a given DL model. Figure 6
shows how trees can be used to represent model ResNet-101
and its KOPs and KOP-RCs. The details are as follows:

e Construct a tree for a given KOP. As shown in Fig-
ure 6, ResNet-101 has a KOP—conv2d, so we construct
a tree for conv2d. To control the height of the tree to
reduce the overhead of online search, the tree contains
only key KOP-RCs that include only the key configu-
rations in Table 1. For this purpose, we calculate the
average norm.(RPS/Budget) of KOP-RCs and select
configuration knobs by descending order. The plot
shows top two KOP-RCs in KOP conv2d.

e Split tree regions in a tree according to KOP-RCs.
Figure 6 also shows how we split a large search space
into small tree regions. On the left side of this plot, we
show that the region of a slope KOP-RC will split into
two sub-regions, and on the right side we show the
details of the split. (a) A tree region for the slope KOP-
RC, which contains a root node A and two subsequent
nodes B and C. (b) Denote D as the offline dataset,
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then D N Q4 represents the data samples falling into
node A. (c) We apply Kmeans to find a good and a
bad clusters in D N Q4. (d) We employ Support Vector
Machines (SVM) to learn a decision boundary, thus the
data of Q4 split into sub-regions Qp and Q¢, and data
in Qp have better norm.(RPS/Budget). Since convex
and concave KOP-RCs have to satisfy two decision
boundaries simultaneously, they will split a two-level
tree region as shown in the left side of Figure 6.

o Cover all KOPs. We repeat the above steps until all
KOPs in ResNet-101 have been learned.

Next, we use trees to represent the entire search space.
Specifically, suppose Q denotes the entire search space of the
offline dataset D = {(a;, v;) }, where a; corresponds to the ith
data, and v; corresponds to the norm.(RPS/Budget) of a;. It
can be divided into n € K trees, where K equals the number
of KOPs in dataset D. Each tree Q, has M tree nodes, and
Qpm denotes a tree region Q,, of tree node m € M. Finally,
we can present each tree as

Q= ), Q. 0

meM
Each Q,, is corresponding to a KOP-RC, its data will be
grouped into a good and a bad clusters by Kmeans, and the
decision boundary of these clusters will be measured by SVM.
In this process, we use average performance V(Q,,,) to eval-
uate how “good” or “bad” a tree region Q,, is. Specifically,
the average performance of each region Q,,,, is estimated by

1
V(Qum) = N Z v; 2)
0;€EDNQpm
where N denotes the number of data, and D N Q,,,,, denotes
all data in this tree region.
Finally, when a target DL model comes, why do we still
need online search? There are two main reasons:

o Complex DL model variants. In our study, unseen
DL models are mainly derived from model variants.
However, the resource sensitivity of model variants
is difficult to predict accurately, as their structure and
parameters may be completely different [13, 35]. In
this case, reusing the best configuration of the offline

learned models may lead to poor performance.
o Conflicts in KOPs. The resource sensitivity may also
be obscured by conflicts in multiple KOPs. For instance,
KOP conv2d requires a larger batch size of 128, while
KOP dense achieves optimal norm.(RPS/Budget) when
batch size is 64. Therefore, when different KOPs are in
a same DL model, it is difficult to evaluate the impact

of them via accurate estimation.

After the above steps, as long as KOPs of an unseen model
have been learned before, we are able to represent it with
trees. These trees can depict good search regions for the
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Offline Profile

Online Search
MCTS-BO search policy:

go-left: exploiting locally
go-right: exploring globally

Search Order:

(1) 7(D)=08 (2) V(D) =075)
(3) V(D) = 0.72), (4) V(E) =085
(5) Repeat until a near-optimal result
is obtained

V(D) = 09[[V(E) = 08[[v(R) = 0.7][V(6) = 056 |

Figure 7: In the online phase, MCTS-BO controls the search
strategy: go-left to exploit local tree regions, and go-right to
explore other tree regions or other trees.

target DL model, and our online search process can help to
quickly locate near-optimal configurations.

3.3 Fast Adaptive Searching via MCTS-BO

Problem statement. Existing CR systems suffer from the
cold start problem, requiring dozens of trials to search for a
near-optimal configuration for unseen DL models. Our goal
is to minimize the number of trials.

How MCTS-BO works. To achieve the above goal, we
implement an MCTS-BO algorithm (based on a basic algo-
rithm [31]) that reuses trees from the offline phase to nav-
igate the search for unseen DL models. Figure 7 provides
an example to illustrate how MCTS-BO works: (1) It reuses
optimal configuration in the offline phase. (2) However, this
configuration performs a sub-optimal result on the target DL
model, so MCTS-BO applies the go-left strategy to exploit lo-
cal sub-regions. (3) It continues to exploit more sub-regions,
but the results do not improve. (4) It uses the go-right strat-
egy to explore global tree regions or other trees. (5) Repeat
the above steps until a near-optimal result is obtained.

Specifically, MCTS-BO reuses the tree structure of Q, and
updates the tree regions Q,,, with new data from unseen
DL models. Suppose D’ = {aj,v;} corresponds to the dataset
which contains trial data from an unseen DL model, where
a; corresponds to the jth trial, and v; corresponds to the
performance of a;. Then, we update existing tree regions
Qum by estimating

N 1
V(Qnm) = N Z vj. (3)

0; €D'NQpm

To evaluate whether the search in Q,,, is efficient, we
minimize the deviation of the trials

D7 (Qum) —0))* )

where our goal is to minimize the gap between the predicted
result V(Qp,) and the actual result o ;.

The above is the basic Monte Carlos Tree Search (MCTS)
process. However, gaps in Equation 4 may cause us to search

minimize
(aj,0;) €ED’'NQpm
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(a) KOP conv2d the 1st trial. (b) KOP conv2d the 2nd trial.
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relu

(c) KOP relu the 1st trial.

(d) KOP relu the 2nd trial.

(e) KOP relu the 3rd trial.

Figure 8: Searching for a near-optimal configuration for an unseen DL model via MCTS-BO. The model contains two KOPs
conv2d and relu represented by two trees. The X-axis shows the configuration while the Y-axis shows the norm.(RPS/Budget).
The blue solid lines represent the actual curve of the DL model, and the red dashed lines plot the predicted curve of MCTS-BO.
The green and red regions represent Q004 and Qpaq search regions, respectively. The purple region represents a original bad
search region turned into a good one because of deviation between the actual curve and the predicted curve.

in bad regions. In this case, we employ Bayesian Optimization
(BO) while performing MCTS to strike a balance between
exploitation (search in sub-regions) and exploration (search
in another region or another tree). BO has been shown to
assign more trials in good regions compared to other meth-
ods [42], such as Support Vector Machines (SVM) [34] and
Linear Regression (LR) [5]. This helps us to quickly jump
to another potentially good region when the search results
become worse.

Figure 8 and Algorithm 1 show the search process for an
unseen DL model via MCTS-BO. Specifically, it works as
follows:

e Initializing and analyzing unseen DL models. As
shown in Algorithm 1 lines 1~5, for an unseen DL
model, we randomly pick up a configuration to run
it, and identify its KOPs. If this model has more than
one KOPs, we calculate the average GPU computation
time and GPU memory utilization of these KOPs to
decide their descending search order.

o Searching for a near-optimal configuration. As
shown in Algorithm 1 lines 6~16 and Figure 8, we first
search for the next trial (Figure 8(a) and Figure 8(c)).
Next, because there are performance gaps between
the actual curve (blue solid lines in Figure 8) and the
MCTS-BO’s predicted curve (red dashed lines in Fig-
ure 8), the algorithm needs to balance the exploration
and exploitation when searching. In this case, MCTS-
BO either generates new sub-regions with new data to
further exploit a potentially good region (as shown in
Figure 8(b) ?), or jumps to search in another region or
another tree to avoid continuing searching in a bad re-
gion (as shown in Figure 8(d) and Figure 8(e)). Finally,
MCTS-BO ends up with a near-optimal configuration.

9 After node e, there are subsequent nodes to cover all configuration knobs,
s0 it can provide a runnable configuration, which we do not show fully for
space reasons.

Algorithm 1 MCTS-BO
Require:
The a; denotes the jth trial of the target DL model.
The v; denotes actual performance of a;.
The vtarger denotes the performance target.
The Q,, denotes the nth tree.
The Q, denotes the mth tree region in Q,,.
The V(Qpm) denotes predicted performance.
The x denotes recommended configuration.
1: Initialize MCTS-BO with a random picked configuration
and run a trial for the target model to collect data a;.
2: Analyze a; to identify the KOPs of the target model,
suppose it has K KOPs corresponding to K trees.
3. if K > 2 then
4: Calculate the average GPU computation time and
GPU memory utilization of KOPs to get their descending
search order 1,2,--- , K.
: end if
: for j trialsin 1,2,---, J do
for ntreesin1,2,---,K do
Minimize 3 (V(Qpm) — 0;)? to search for x.
if Uj > Z)j,I then
Exploitation: generate new sub-regions in
a potentially good region with new data a; to achieve
better performance.
else
Exploration: jump to another region or an-
other tree to avoid continuing searching in a bad region.
end if
Break when v; > 0s4rge:-
end for
16: end for
Ensure:
Recommended configuration x after j trials.

Y 2 3w

10:
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From Algorithm 1 we can find that in the worst case, Fal-
con has a time complexity of O(NM), which is comparable
to Morphling (its algorithm works in two stages with a time
complexity of O(NM)). However, common DL models usu-
ally have only a few or even one KOPs (e.g., most CNN and
GAN models have only one KOP). This means that in most
cases, the algorithm only needs a few iterations on line 7,
which is why Falcon is able to reduce the time complexity
and alleviate the cold start problem.

2]
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Figure 9: Falcon’s architecture.

4 IMPLEMENTATION

In this section, we introduce Falcon’s architecture and its
main components '°. We have implemented Falcon as a man-
aged service in CentOS. The MCTS-BO algorithm is devel-
oped based on a basic algorithm called SPBOpt [31]. Our
implementation consists of around 5k lines of Python.
Workflow. As shown in Figure 9, Falcon implements an
offline-online CR system that works as follows: (a) Falcon
uses TVM to load DL models developed by different DL
frameworks (e.g., TensorFlow [1], PyTorch [27], PaddlePad-
dle [21]) and runs experiments in TVM in a container runtime
environment. (b) Falcon constructs trees and stores them in
Json files, making it easier to be queried by other components
with Http requests. (c) Users submit DL models via Falcon’s
web UI, giving budget caps and performance requirements
(e.g., peak RPS). (d) For a user and the DL model, Falcon
iteratively returns the next recommended configuration. (e)
The user iteratively starts trial (on public clouds) to evaluate
the configuration, until the budget exhausts or the perfor-
mance requirement meets, or Falcon announces that it finds
a near-optimal configuration with maximized performance
per budget. During this process, users can use recommended
configurations to serve DL models on public clouds.
System components. The Web Ul is developed by the
VUE framework [40] and allows users to submit DL models
and run trials to obtain a near-optimal configuration. The

0Falcon is now available at https://github.com/dos-lab/Falcon.
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profiler runs experiments for each operator with varying
configuration knobs and records the running time. The run-
ning time is then converted into performance metrics RPS
(batch size/running time) and the performance per budget
is measured by (RPS/Budget), which is then normalized by
the min-max algorithm [32] to obtain norm.(RPS/Budget).
The searcher communicates with other components by Http
requests, and it works as querying trees, recommending con-
figurations via MCTS-BO algorithm, running trials for users,
and returning results to the Web UL

5 EVALUATION

In this section, we evaluate Falcon by the following experi-
ment design:

o Effectiveness. We evaluate the effectiveness of Fal-
con, including alleviating the cold start problem, apple-
to-apple comparisons, model-by-model comparisons,
and searching in good regions.

¢ Robustness. We evaluate robustness of Falcon by ap-
plying different parameters to the methods used by
Falcon, such as thresholds for identifying KOPs and
the parameters for PCA.

e Practical benefits for real-world applications. To
evaluate practical benefits of configuration recommen-
dation, we use an enterprise-level DL benchmark [29]
to simulate real-world applications.

Table 2: DL models in our experiments.

No. Name No. Name
1 ResNet-152 19 | MobileNet V2
2 DenseNet-121 20 VGG 16
3 WGAN 21 ResNet-101
4 DCGAN 22 | ResNet152 V2
5 SGAN 23 | Inception V2
6 MobileNet V3 24 | Inception V4
o 7 Inception-ResNet V2 | _ | 25 | DenseNet-201
% 8 Inception V3 E 26 Bert-large
‘S’ 9 VGG19 é’o 27 GRU
| 10 Fast-RCNN & 28 RoBERTa
11 Bert-base 29 Transformer
12 NCF 30 Tacotron2
13 DCN
14 DRN
15 NasNet-large
16 LSTM
17 | EfficientNet-widese-b4
18 YOLO V5

5.1 Experiments Setup

DL models As shown in Table 2, we select 30 open source
models of CNN, RNN, Bert, Transformer, and GAN from
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TensorFlow hub, including typical categories such as com-
puter vision, natural language process, recommend system.
To simulate the environment where users submit unseen DL
models and model variants, we divide these models into a
source set and a target set, where the models in the source set
are used for the offline phase and the models in the target
set are used for the online phase.

Note that, as we investigated in Section 2.2, model variants
ending with a number (e.g., ResNet-101) change the number
of blocks, and those ending with a version (e.g., YOLO V5)
optimize the block structure.

Configuration search space. To simulate the scenario of
deploying DL models on the public clouds, we select instance
types on Amazon EC2 covering GPU types such as M60,
T4, K80, and V100. In addition, we use a container runtime
environment to ensure that all configuration knobs can be
tuned within a reasonable range. For instance, we set the
upper bound of the batch size to 128 because the performance
of DL inference in our selected GPU types no longer improves
when batch size > 128. The detailed configuration knobs are
as follows:

e CPU cores: 1, 2, 3, 4, 5.

e GPU type: M60, T4, K80, V100.

e GPU memory (GB): 0.8, 1.2, 1.6, 2.4.
e Batch size: 4, 8, 16, 32, 64, 128.

e GPU power '': 50%, 75%, 100%.

With the combination of these configuration knobs, we
obtain a search space with 1,440 configuration candidates,
and all experiments are evaluated under this search space.

Baselines. We compare Falcon with the following state-
of-the-art works.

e Morphling[43] is a CR system based on meta-learning
and BO, it evaluates configuration-performance curves
for existing DL models and adapts unseen DL models
by iteratively updating meta-model with newly trial
data using stochastic gradient descent (SGD), which is
inefficient and time-consuming in a large search space.
To evaluate Morphling, we train the meta-learning
model using data from the source set, and validate it in
the target set. We tune the parameters based on Mor-
phling’s recommendations. For instance, it suggests
setting the weight knob ¢ to a small constant.

o Vesta[45] leverages a transfer learning-based CR sys-
tem that transfer configuration-performance knowl-
edge to cross-framework applications. It only works
well in the model level. To evaluate Vesta, we use mod-
els from the source set to build its two-layer bipartite
graph and validate it using models from the target

1 The four GPU types are rated at 150 watts for the K80, 70 watts for the
T4, 240 watts for the M60, and 300 watts for the V100.
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set. Vesta also provides a comprehensive parameter
suggestion, such as the K value for K-means.

e HeterBO[48] is a CR system that observes prior fea-
tures of other DL training models and accelerates the
training process of new models via BO. It is a model-
level optimization work. To evaluate HeterBO, we train
the Conventional BO model using data from the source
set. For parameter setting, HeterBO supports a dy-
namic constraints setting and provides a heuristic rule
to support various scenarios. We use data from the
source set to simulate this process and use the target
set for validation.

e Ernest[38] summarizes computation and communica-
tion patterns to build the predictive function for ad-
vanced analytics models. However, it requires a large
number of samples to retrain the predictive function
for unseen models. We run Ernest for each model in
the source set in a sandbox environment to collect data
and build the predictive function, and use models in
the target set to dynamically tune its parameters for
best practice.

Metrics. We use three metrics in our evaluations.

e Search accuracy: we evaluate the search accuracy by
measuring the gaps between the recommended and the
optimal configurations by W % 100%. Note
that, we obtain the optimal configuration via exhaus-
tive search.

e Search overhead: we use the number of trials to evalu-
ate the search overhead, and we also record the wall-
clock time for running the trials, which in our environ-
ment takes an average of 15 minutes per trial.

e Practical benefits: we set the objective of the CR system
as to use the recommended configurations on clouds
to maximize the performance per budget, i.e.,

maximize Norm.(RPS/Budget) (5)

where the budget is calculated by instance price X run-
ning time in Amazon EC2, and we use min-max to
normalize RPS/Budget for better evaluation.

5.2 Effectiveness of Falcon

Alleviating the cold start problem. Falcon alleviates the
cold start problem by taking full advantage of operators,
it learns KOPs and KOP-RCs to divide search space into
good and bad search regions, and employs MCTS-BO to
quickly adapt to unseen DL models with relatively lower
search overhead (trials). Figure 10 shows the search accuracy
of unseen DL models (from the target set in Table 2) with
varying number of trials. In the six trials case, only Falcon can
achieve over 90% search accuracy, while the baseline value
is less than 60%. This implies that Falcon can recommend
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Figure 10: Comparison of different number of trials. The
X-axis shows 6, 15, 30 trials, respectively. The Y-axis shows
the search accuracy of the DL models in the target set.

near-optimal configurations after six trials, and the wall-
clock time is 1.5 hours. As the number of trials increases,
the search accuracy of baselines is more or less improved,
and Morphling can achieve search accuracy that close to
Falcon at 30 trials, and the wall-clock time is 7.5 hours. In this
context, Falcon can find a near-optimal configuration with
80% less search overhead for unseen DL models compared
to state-of-the-art efforts.

Apple-to-apple comparison with Morphling. To fur-
ther investigate whether Falcon is still effective under differ-
ent experiment settings. We conduct an apple-to-apple com-
parison with Morphling. As shown in Figure 11, we design
two experiments, the first one compares two cases: (a) un-
seen model + seen operator, and (b) unseen model + unseen
operator. The results are shown in Figure 11(a), where the
Y-axis is the wall-clock time of the search. For each case, we
run 10 times to take a conservative estimate of P90 value. In
case (a) the wall-clock time of Morphling is 7.5 hours, while
the wall-clock time of Falcon is 1.5 hours. In case (b) both of
them spend 7.5 hours on searching, because Falcon needs to
profile unseen KOPs first (Bert-large has two KOPs—dense
and transpose), just as Morphling needs to profile the unseen
model.

The second experiment compares the end-to-end wall-
clock time for the online search phase (initialization, ex-
ploration, exploitation) in the case of unseen model + seen
operator. Figure 11(b) shows the comparison results. (a) Ini-
tialization: Morphling needs two hours (eight trials) to ini-
tialize the meta-model, while Falcon costs only 15 minutes
(one trial) to analyze the KOPs. (b) Exploration: Morphling
spends an average of 1.5 hours (six explorations) due to its
poor adaptation to the resource curves of the unseen model,
which requires frequent exploration to avoid sub-optimal
results, while Falcon costs 15 to 30 minutes (one or two
explorations) due to the KOP-RCs can precisely navigate
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Figure 11: Apple-to-apple comparison with Morphling, and
the tested model is Bert-large. (a) Comparing the wall-clock
time of the search in two cases, and the bar shows the de-
viations. (b) Comparing end-to-end time cost of the online
search phase.

near-optimal configurations. (c) Exploitation: Morphling’s
frequent exploration resulted in a long time exploitation
(four hours and 16 trials in average), while Falcon only runs
three or four exploitations in 45 minutes to one hour.

Model-by-model configuration optimization. The ex-
periment in Figure 10 has compared the overall results of
configuration optimization. In this experiment, we evaluate
the model-by-model cases for DL models in the target set by
evaluating the metrics in Equation 5.

As shown in Figure 12, in most of the cases, Falcon can
find near-optimal configurations after 1.5 hours (six trials),
except for GRU and Tacotron2 (see Figure 12(a)). After ana-
lyzing, we find that they have more KOPs than others (see
Table 3), leading to scattered search results in a large search
space. Even so, Falcon performs much better than baselines.
From Figure 12(b) we can see that by running more trials (15
trials) after 3 hours and 45 minutes, Falcon can achieve near-
optimal results for all target models. We also find that after
15 trials, Morphling only works well for CNN and GAN mod-
els, which is because most CNN and GAN models have only
one KOP—conv2d, making them have similar model-level
resource sensitivity and thus can get better results. How-
ever, other DL models (e.g., Bert-large, GRU, RoBERTa) still
perform poorly in Morphling because the resource sensi-
tivity curves of these models vary widely. When the wall-
clock time has passed 7.5 hours (30 trials), as shown in Fig-
ure 12(c), Morphling’s results are greatly improved, with
norm.(RPS/Budget) improving to above 0.8 for all models,
while results for other baselines improve more slowly.

Searching in good regions. One of Falcon’s greatest
strengths is the significant improvements it makes in the first
several trials. Falcon achieves this by employing MCTS-BO
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Figure 12: Searching for a near-optimal configuration for unseen DL models. (a) Evaluating norm.(RPS/Budget) after 1.5 hours
(six trials), only Falcon can find near-optimal configurations with over 0.9 norm.(RPS/Budget). (b) Evaluating norm.(RPS/Budget)
after 3 hours and 45 minutes (15 trials), Morphling can achieve comparable norm.(RPS/Budget) to Falcon for the first seven DL
models because their model-level similarity is higher than other models. (c) Evaluating norm.(RPS/Budget) after 7.5 hours
(30 trials), Morphling can achieve 0.8 to 1.0 norm.(RPS/Budget) on all DL models, while other baselines performs 0.5 to 0.8

norm.(RPS/Budget).
Table 3: KOPs of different DL models with varying thresholds.
Models Setting a 1% threshold Setting a 5% threshold Setting a 10% threshold
Inception V2, Inception V4 conv2d, add conv2d conv2d
MobileNet V2 conv2d, relu, add conv2d, relu conv2d
Bert-large, RoBERTa, Trans- dense, transpose, add dense, transpose dense, transpose
former

VGG16, ResNet-101, ResNet152 conv2d, relu, add
V2, DenseNet-201

GRU split, strided_slice, dense, con-
catenate, add, sigmoid, tanh,
multiply

Tacotron2 split, strided_slice, dense, con-

catenate, add, sigmoid, tanh,
multiply, convld

conv2d

split, dense, concatenate, add,
sigmoid, tanh, multiply

split, strided_slice, dense, add,
sigmoid, tanh, multiply

conv2d

split, dense, multiply

split, dense, multiply

to continuously search in good search regions. To evalu-
ate the effectiveness of searching in good regions, we plot
the search path of two configuration knobs (GPU mem-
ory and batch size) for Falcon and Morphling (we choose
Morphling because it outperforms other baselines in our
experiments). Figure 13 shows the search path of an un-
seen DL model RoBERTa, where both Falcon and Morphling

start with a bad configuration since they randomly pick
up a configuration in the first trial. After that, Falcon ana-
lyzes the KOPs and matches them with good search regions
(1.6 < GPU memory < 2.4 and batch size > 64) via MCTS-
BO, while Morphling struggles in bad search regions due to

poor model-level similarity.
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Figure 13: Comparison of the search path for an unseen DL
model (RoBERTa). The number in the plot shows the xth
trial. The green solid lines highlight the good search regions.
The red box highlights near-optimal configurations.
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Figure 14: Tuning threshold for identifying KOPs. The set-
ting of the threshold will impact the search accuracy and
search overhead.

5.3 Robustness

Tuning thresholds for identifying KOPs. Falcon identi-
fies KOPs in the offline phase by setting two thresholds: GPU
computation time > thresholdl and GPU memory utilization
> threshold2. In this experiment, however, we decided to
combine these two thresholds into one (the threshold that
appears below) for two reasons: (a) our large-scale evalu-
ation shows (see Section 3.1) that GPU computation time
and GPU memory utilization are usually at the same level
in KOPs, and (b) to avoid that one threshold has a greater
impact than the other. Intuitively, setting a smaller threshold
will keep more KOPs while setting larger one will keep less
KOPs. This process is important for strike a balance between
search accuracy (keep more) and search overhead (keep less).
In this context, we evaluate the threshold of 1%, 5%, and 10%.
Figure 14 shows that we set the threshold to 5% to achieve
best practice in our environment and Table 3 shows the KOPs
of different DL models (from the target set in Table 2) with
different thresholds.
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Figure 15: Tuning the cut-off parameter in PCA for pruning
redundant configurations in KOP-RCs. The setting of cut-off
will impact the search accuracy (the left Y-axis) and search
overhead (the right Y-axis).
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Figure 16: Practical benefits of applying recommended con-
figurations for three benchmark applications. The optimal
configurations were found by exhaustive search.

Tuning parameters for pruning redundant configu-
rations in KOP-RCs. To further reduce the amount of data
and leave only important data, Falcon employs PCA to prune
redundant configurations. There is a parameter cut-off in
PCA to control the configurations to be kept, and we tune
cut-off from 80% to 95%. Note that, cut-off below 80% is not
in consideration because we observe that it cannot filter
out configurations in the plane KOP-RCs (see Figure 5(d)).
As shown in Figure 15, Falcon obtains better search accu-
racy when the cut-off is 85%, and the corresponding search
overhead is close to six trials in average.

5.4 Practical Benefits

To investigate whether Falcon’s recommended configura-
tions provide practical benefits for users, we choose three
DL applications from an enterprise-level benchmark [29] and
evaluate them on Amazon EC2. As shown in Figure 16, Fal-
con can recommend an optimal (or a near-optimal) instance
type for better norm.(RPS/Budget).



SoCC ’22, November 7-11, 2022, San Francisco, CA, USA

6 DISCUSSION

Generalizability of KOPs and KOP-RCs. The generaliz-
ability of KOPs and KOP-RCs is crucial for Falcon to alleviate
the cold start problem and to find a near-optimal configura-
tion efficiently. Therefore, we do following efforts to guar-
antee the generalizability of KOPs and KOP-RCs: (a) Some
studies [7, 11] have shown the variability of operators devel-
oped in different DL frameworks (e.g., TensorFlow, PyTorch).
For this reason, we evaluate KOPs and KOP-RCs by Euclidean
distance and the result shows that the average variability
of KOPs and KOP-RCs in different platforms is less than 6%
(KOPs=5%, KOP-RCs=4%). (b) We find that some operators
may differ from existing KOP-RCs, making them difficult to
evaluate. Fortunately, they are not included in KOPs of any
of the models we tested. (c) We consider KOPs and KOP-RCs
to be easily scalable. For a new operator, we offline profile it
to learn its KOP-RCs (see Section 3.1). For a complicated new
pattern that is difficult to represent in tree structure, we can
try other complicated machine learning models (e.g., neural
networks) if necessary.

Effectiveness of MCTS-BO. We employ MCTS-BO al-
gorithm because it can take full advantage of reusing KOPs
and KOP-RCs to search for a near-optimal configuration
efficiently. We make the following efforts to guarantee the ef-
fectiveness of MCTS-BO in our scenario: (a) MCTS is a game
theory-based tree search algorithm that is commonly used to
solve search efficiency problems in a large search space (e.g.,
AlphaGo [18]). Recent studies [34, 44] show that tree height
is an important hyper-parameter that affects the efficiency
of MCTS. In this case, we measure the tree height empirically
and set it to eight in our environment. (b) In our design, we
use MCTS to navigate the search (see Figure 8b) for relatively
small search regions in a large search space. When the search
result becomes worse, we use BO algorithm [9] to identify
potentially good search regions. In particular, we evaluated
commonly used algorithms, including BO, SVM and LR, and
BO achieved better results.

7 RELATED WORK

Many systems have been proposed to recommend optimal
configurations and optimize resource allocation. However,
none of them can solve our problem.

Configuration recommendation. These efforts recom-
mend optimal configurations for cloud applications in two
ways: (a) Black-box searching [2, 8, 14, 24, 43, 48, 49]. Mor-
phling [43] trains a meta-model offline that captures the
similarity of resource sensitivity curves for a wide range of
DL inference services. It searches for the optimal configura-
tion by combining BO and meta-learning techniques, and use
meta-model to accelerate the search process. HeterBO [48]
makes a balance between scale-up (more capable instances)
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and scale-out (more instances) for ML training. It achieves
this by profiling machine learning specific prior from ML
models and leverages a cost-aware BO algorithm to adapt to
similar ML models. However, as we discussed in Section 2.1,
these approaches are inefficient for unseen DL models. (b)
System modeling [10, 15, 19, 33, 38, 45]. Vesta [45] abstracts
knowledge from offline profile of cross-framework appli-
cations. It builds a two-layer bipartite graph to represent
cross-framework knowledge and reuse them through trans-
fer learning. Hence, it can adapt to applications developed
by different frameworks. Ernest [38] summarizes computa-
tion and communication patterns for large-scale analytics.
It trains a linear regression model to predict a near-optimal
configuration. However, these approaches need to retrain
their models which is time consuming.

Resource allocation optimization. Recent studies [11,
17, 20, 22, 26, 28, 51] analyze the resource sensitivity for DL
models to optimize their resource allocation. Pollux[28] pro-
poses a formulation of throughput rate for DL workloads
and optimizes the actual throughput rate by co-adjusting the
resource allocation and model configuration. nn-Meter[51]
proposes a system for predicting the inference latency of
edge devices by partitioning inference process into kernels
and adaptively tuning their configurations to reduce the
latency. Pesto[11] jointly optimizes DL model placement
and scheduling at a fine-grained operator-level to minimize
communication between GPUs while maximize model paral-
lelism. However, none of them focus on unseen DL models.

8 CONCLUSION

This paper presents Falcon, a novel CR system that can
quickly adapt to unseen DL models to maximize the perfor-
mance per budget. The main insight is that Falcon presents a
new perspective to alleviate the cold start problem by lever-
aging Key Operators (KOPs) and Key Operator Resource
Curves (KOP-RCs). It first learns KOPs and KOP-RCs from a
large-scale evaluation on Amazon EC2. Next, it represents
KOPs and KOP-RCs in trees to divide search space into good
and bad search regions. Finally, it employs MCTS-BO al-
gorithm to search efficiently in good regions and avoid to
continuing searching in bad regions. Experiments show that
Falcon significantly reduces the search overhead for unseen
DL models from dozens of trials to an average of six.
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