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Abstract
Recently, Deep Learning (DL) models have demonstrated

great success for its attractive ability of high accuracy used

in artificial intelligence Internet of Things applications. A

common deployment solution is to run such DL inference

tasks on edge servers. In a DL inference, each operator takes

tensors as input and run in a tensor virtual machine, which

isolates resource usage among operators. Nevertheless, exist-

ing edge-based DL inference approaches can not efficiently

use heterogeneous resources (e.g., CPU and low-end GPU)

on edge servers and result in sub-optimal DL inference per-

formance, since they can only partition operators in a DL

inferencewith equal or fixed ratios. It is still a big challenge to

support partition optimizations over edge servers for a wide

range of DL models, such as Convolution Neural Network

(CNN), Recurrent Neural Network (RNN) and Transformers.

In this paper, we present EOP, an Efficient Operator Parti-

tion approach to optimize DL inferences over edge servers,

to address this challenge. Firstly, we carry out a large-scale

performance evaluation on operators running on hetero-

geneous resources, and reveal that many operators do not

follow similar performance variation when input tensors
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change. Secondly, we employ three categorized patterns to

estimate the performance of operators, and then efficiently

partition key operators and tune partition ratios. Finally, we

implement EOP on TVM, and experiments over a typical

edge server show that EOP improves the inference perfor-

mance by up to 1.25−1.97× for various DL models compared

to state-of-the-art approaches.
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1 Introduction
Running various Deep Learning (DL) models, such as Con-

volutional Neural Network (CNN) [24], Recurrent Neural

Network (RNN) [22], Yolo [23] and Transformers [26] over

edge servers can empower artificial intelligence Internet of

Things applications. It has been proofed as an important

way to achieve significant performance improvement of DL

models [16, 25, 30]. In this paper, we focus on partition op-
timization to run partitioned operators in parallel to use

heterogeneous resource within an edge server. And we use

https://doi.org/10.1145/3516807.3516820
https://doi.org/10.1145/3516807.3516820
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execution time of an operator or subgraph
1
to demonstrate

its performance.
Unlike cloud servers have multiple powerful CPUs and

GPUs [21], an edge server is always a desktop or laptop com-

puter with limited power of CPUs (e.g., Intel i7-7700) and

GPUs (e.g., NVIDIA GTX2060) which have varying compu-

tation throughput [9, 12, 29]. During DL inference, the edge

server receives a trained DL model from the cloud server,

and collects data from the end devices as input tensors. Then

it continues the inference computation and returns result

to end devices. After partitioning, operators in DL interfere

can run parallelly with parts of its input tensors on hetero-

geneous resources, and get improved performance.

However, existing edge server based operator partition

approaches using static partition ratios. They still suffer from

a set of limitations: the assumption of operator partition on

CPU and GPU with comparable computational throughput

[16], or only on homogeneous devices [28] results in equal

partition ratios (each CPU and GPU have 1/2 tensors) and
may make CPU/GPU idle. Manually setting fixed operator

partition ratios for different operators or subgraphs [25, 29,

30] can only work for heterogeneous resources with same

computation architecture (e.g., TPUv2/v3), which cannot be

used in CPU/GPU heterogeneous computation (LLVM in

CPU and CUDA in GPU).

To address the above limitations, we set the dynamic parti-

tions ratios for operators to gain the full computation poten-

tial from heterogeneous resources. As the example shown in

Fig. 1(a), it includes three operators {𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 𝐷𝑒𝑛𝑠𝑒,𝑇𝑎𝑛ℎ}
of two subgraphs {𝑆1, 𝑆2}. These operators are common used

in Transformers models [26]. In addition, the speedup of 𝑆1

is 1.5, and the speedups of𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 and 𝐷𝑒𝑛𝑠𝑒 are 1 and 2,

respectively. Total operator execution time can be reduced

by partitioning on CPU and GPU. Existing approaches may

get different partition results.

1) Equal partition ratio. As shown in Fig. 1(b), this ap-

proach focuses on selecting an optimal number of resources

that can balance communication overhead and execution

time. It tries to split an operator to different number of sub-

operators, and then runs them using an empirical partition

(e.g., an equal proportions algorithm). After that, it searches

for an optimal partition with a smaller operator execution

time. The total time can be reduced from 5𝑠 to nearly 4𝑠 .

Obviously, this approach can hardly use heterogeneous re-

sources efficiently. It would cause a large time difference

between two sub-operators of 𝐷𝑒𝑛𝑠𝑒 , and operator𝑇𝑎𝑛ℎ has

to wait until CPU has been released.

2) Fixed partition ratio. As shown in Fig. 1(c), this ap-

proach sets partition ratios based on subgraph speedup, both

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 and 𝐷𝑒𝑛𝑠𝑒 in 𝑆1 put 1.5/(1 + 1.5) = 0.6𝑠 tensor

on GPU Unfortunately and 1/(1 + 1.5) = 0.4𝑠 on CPU. The

1
A DL model can usually be partitioned into several subgraphs, and each

subgraph contains a set of operators.

total time can be further reduced to 3.3𝑠 . However, both

sub-operators of 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 and 𝐷𝑒𝑛𝑠𝑒 need to wait due to

subgraph speedup are different from operators’. This may

cause CPU/GPU idle and hinder DL inference performance

improvement.
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(c) Fixed partition ratio: (0.6, 0.4) for𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 and 𝐷𝑒𝑛𝑠𝑒
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(d) Dynamic partition ratio: (0.7, 0.3) for 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , (0.4, 0.6) for
𝐷𝑒𝑛𝑠𝑒

Figure 1. Partition results when using different approaches

Actually, different input tensors (decided by partition ra-

tios) may affect operator speedups on heterogeneous re-

sources. CPU has smaller number but faster cores, operators

with smaller input tensors can run faster on it. GPU has

many but slower cores, operators with large input tensors

may get better performance [32]. That means 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

may have speedup < 1 and 𝐷𝑒𝑛𝑠𝑒’s > 2 when partitioning,

respectively. As the example shown in in Fig. 1(d), if we can

accurately estimate each operator’s speedup with dynamic

partition ratios, we can select the ratios with least execution

time.

In this paper, we present EOP, an Efficient Operator Par-

tition method to optimize DL inferences over edge servers,
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Figure 2. A typical deployment pipeline of DL inference on edge-cloud environment.

to address this challenge. We believe our work makes the

following advancements.

• We carry out a large-scale performance evaluation on

operators from ten typical DL models, and reveal that

the performance of many operators on edge servers is

non-linear when input tensor change.

• We summarize three categorized performance varia-

tion patterns that can be used to accurately estimate

operator performance. We then efficiently partition

key operators and tune partition ratios to improve DL

inference performance.

• We implement EOP on TVM [6]. Our experiments on

Transformers [26] and RNNs [1] show that EOP can

improve inference performance by 1.25-1.97×, and can
also obtain comparable improvements for traditional

CNNs compared to state-of-the-art approaches.

2 Background, Problem and Challenge
Analysis

This section first introduce the deployment pipeline of DL

inference on edge-cloud environment, and reveals that DL

inference performance are affected by many operators. In

addition, operator speedups are dynamic with different input

tensors, so as to their optimized partition ratios. Then, we

propose several challenges to guide the design of EOP.

2.1 Background
As shown in Fig. 2, the deployment pipeline of DL inference

comprises several different stages:

1) mainstream deep learning frameworks like Tensorflow

[4], Pytorch [20] can be used on cloud servers to train a

DL model by a DL developer, with the goal of maximized

accuracy.

2) the trained model can be exported to a computation

graph described by an Intermediate Representation (IR) lan-

guage (Halide in TVM [6]), some graph level optimizations

like operator fusion can be applied.

3) DL compile optimization tools like TVM can generate

many execution schedules for each operator with certain

input tensors, while its performance evaluator can put each

operatorwith different schedules on edge servers and collects

execution time. Only the operator’s schedule with the least

execution time can be finally deployed on edge server after

many tries.

4) with each optimized operator in the DL model, the edge

server can run DL inference by the input tensors from a wide

range of end devices.

Note that current TVM [6] does not support operator

partition on heterogeneous resources, and we modify IR

by repeating target operators and adding tensor 𝑠𝑝𝑙𝑖𝑡 and

𝑐𝑜𝑛𝑐𝑎𝑡 operators (detailed in Section 3) to overcome this

limitation.

2.2 Problem Analysis
Equal partition ratio can hardly get the optimal DL in-
ference performance. As the operator speedup analysis

results on an edge server, operators may have 4× varied

speedups in a RNN model shown in Fig. 3(a). Equally parti-

tioning all operators will loss a lot of performance improve-

ment potential, since partitioned operators may still have

long execution time on CPU or GPU.

Fixed partition ratio can be hardly used for opera-
tors in DL models other than CNNs. Fig. 3(b) shows the
variation of execution time and speedup in CNN subgraphs

(ResNet-18). We can see that operator 𝐶𝑜𝑣𝑛2𝐷 dominates

nearly all inference time (nearly 99%) in CNNs. Since𝐶𝑜𝑛𝑣2𝐷

has linear performance when the input changes [25], it is

lucky that partition ratios can be set by subgraph speedups.

But for RNNs, dozens of operators consume 5%-35% of total

inference time, and most of them have dynamic speedups

when input tensors change (Section 2.3). Therefore, such

distributions make fixed partition ratio inefficient.

2.3 Challenge Analysis
How to estimate the performance of each operator ac-
curately? To understand this challenge, we perform an in-

depth analysis by carrying out a large-scale evaluation on

operators from different DL models as follows.

1. CNN and Yolo models [3, 23] include of ResNet-50,

Inception V3, MobileNet, Yolo v2 and Yolo v3.

2. RNN models [1] include LSTM and GRU.

3. Transformer models [26] include BERT.

For each DL model, we consider three dimensions to cover

most operator performance variation when changing inputs:
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Figure 3. Operator execution time percentage and speedup

variation in CNN and RNN.

1. Batch size (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒). It ranges from 2
0
to 2

10
with a

span 16.

2. Height-weight (𝐻𝑊 ): It ranges from (32,32) to (299,299)

with a span 16 in CNNs and Yolo, and ranges from (1,40)

to (1,200) with a span 10 in RNNs and Transformers.

3. Height-weight-weight (𝐻𝑊1𝑊2): It ranges from (32,32,32)

to (4096,4096,4096) with a span 32 in RNNs and Trans-

formers.

As shown in Fig. 4, it is clear that the operator 𝐶𝑜𝑛𝑣2𝐷

performance shows linear growth when changing 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 .

The other operators may have very different patterns on

CPU and GPU. Obviously, different performance variation

patterns on CPU or GPU makes operators have dynamic

speedups (𝑐𝑝𝑢𝑡𝑖𝑚𝑒/𝑔𝑝𝑢𝑡𝑖𝑚𝑒) with different input tensors,

and operator partition should consider these patterns to

improve more DL inference performance.

How to control partition overhead and get optimal
DL inference performance? After estimating each opera-

tor, our goal is tominimize the execution time of all operators.

However, as shown in TABLE 1, the number of operators is

very large (hundreds of operators in a DL model). To make

matters worse, mainstream DL frameworks [4, 20] now sup-

port more than 2, 000 kinds of operators. Partitioning them

will introduce a significant overhead (communication be-

tween CPU and GPU), which is unacceptable for most in-

ference scenarios. Thus, it would be costly to consider all

operators and it is also a challenge to minimize the number

of partitioned operators.

Kind Model

Number of

subgraphs

Number of

operators

CNN

InceptionV3 47 416

ResNet-18 18 91

MobileNet 28 113

SqueezeNet 15 102

Yolo Yolo v3 106 354

RNN

LSTM 2 347

GRU 2 337

Transformers BERT 12 903

Table 1. Number of subgraphs and operators in different DL

models.

3 Key Technologies
In DL inference scenarios, each operator before partitioning

needs an exclusive resource (supported by TVM), and all

operators run based on common default settings of main-

stream DL frameworks [16, 25, 28–30]. After partitioning,

some operators can be partitioned into two sub-operators

on edge servers that can improve DL inference performance.

3.1 Problem Statement
We use 𝐺 to represent a DL’s directed acyclic computation

graph, each vertex 𝑜𝑝𝑖 ∈ 𝐺 is an operator, and each edge

(𝑜𝑝𝑖 , 𝑜𝑝 𝑗 ) ∈ 𝐺 (𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ) denotes a dependency

between operator 𝑜𝑝𝑖 ’s output and operator 𝑜𝑝 𝑗 ’s input. In

addition, each operator before partitioning can run either on

CPU or GPU, which is defined as 𝑅 = {𝐶𝑃𝑈 ,𝐺𝑃𝑈 }.
As shown in Eq. 1, for an input tensor dimension 𝑑 , an

operator partition 𝑝 (𝑜𝑝𝑖 , 𝑑) means 𝑜𝑝𝑖 can be partitioned

into two sub-operators 𝑜𝑝𝐶𝑃𝑈𝑖 and 𝑜𝑝𝐺𝑃𝑈
𝑖 . Thus 𝑜𝑝𝑖 may

aggregate computation power from both CPU and GPU si-

multaneously. Here, 𝑜𝑝𝐶𝑃𝑈𝑖 (𝛼𝑑) and 𝑜𝑝𝐺𝑃𝑈
𝑖 (𝛽𝑑) denote two

sub-operators receive inputs 𝛼𝑑 and 𝛽𝑑 , respectively. The

partition ratio is defined as (𝛼, 𝛽):

𝑝 (𝑜𝑝𝑖 , 𝑑) = {𝑜𝑝𝐶𝑃𝑈𝑖 (𝛼𝑑), 𝑜𝑝𝐺𝑃𝑈
𝑖 (𝛽𝑑)}

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝛼 + 𝛽 = 1, 𝛼, 𝛽 ∈ [0, 1]
(1)

Further, 𝑐𝑚(𝑜𝑝𝐶𝑃𝑈𝑖 , 𝑜𝑝𝐺𝑃𝑈
𝑖 ) denotes the introduced com-

munication overhead after partitioning 𝑜𝑝𝑖 . It can be treated

as the execution time of three specific operators. These are

𝑆𝑝𝑙𝑖𝑡 , 𝐷𝑒𝑣𝑖𝑐𝑒_𝑐𝑜𝑝𝑦 and𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 in TVM [2]. In practice,

these operators always fit a constant pattern and we use this

pattern to estimate communication overhead.

Based on 𝑝 (𝑜𝑝𝑖 , 𝑑) and 𝑐𝑚(𝑜𝑝𝐶𝑃𝑈𝑖 , 𝑜𝑝𝐺𝑃𝑈
𝑖 ), the minimized

execution time for sub-operators 𝑜𝑝𝐶𝑃𝑈𝑖 and 𝑜𝑝𝐺𝑃𝑈
𝑖 running

on 𝐶𝑃𝑈 and𝐺𝑃𝑈 is denoted by 𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅) (Eq. 2). Note
that 𝑐𝑚(𝑜𝑝𝐶𝑃𝑈𝑖 , 𝑜𝑝𝐺𝑃𝑈

𝑖 ) can occur on both CPU and GPU

decided by tensor locations, and operator execution time are

decided by the maximum sub-operator time since the two
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Figure 4. Different performance patterns: we collect different operator execution time on an edge server by changing their

inputs from 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 𝐻𝑊 , 𝐻𝑊1𝑊2 dimensions. Other time-consuming operators have similar performance patterns.

operators can run parallelly.

𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅) = 𝑀𝑎𝑥{𝑡 (𝑜𝑝𝐺𝑃𝑈
𝑖 (𝛽𝑑),𝐺𝑃𝑈 ),

𝑡 (𝑜𝑝𝐶𝑃𝑈𝑖 (𝛼𝑑),𝐶𝑃𝑈 )} + 𝑐𝑚(𝑜𝑝𝐶𝑃𝑈𝑖 , 𝑜𝑝𝐺𝑃𝑈
𝑖 )

(2)

In this context, an optimized partition 𝑝 (𝑜𝑝𝑖 , 𝑑) can be

described by Eq. 3. It means the operator partition 𝑝 (𝑜𝑝𝑖 , 𝑑)
can shorten 𝑜𝑝𝑖 ’s execution time.

𝑡 (𝑜𝑝𝑖 , 𝑟𝑘 ) > 𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅) (3)

In this paper, we use 𝐴𝑇 (𝐺, 𝑅) to denote all operator exe-

cution time, and our goal is to minimize 𝐴𝑇 (𝐺, 𝑅), as shown
in Eq. 4:

𝐴𝑇 (𝐺, 𝑅) =
𝑁∑
𝑖=1

𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅), 𝑠 .𝑡 . : (1 ∼ 3) (4)

3.2 Estimating Operator Performance
In this paper, we conclude three different performance vari-

ation patterns as shown in Fig. 4.

Linear variation pattern. Execution time of some oper-

ators like 𝐶𝑜𝑛𝑣2𝐷 and 𝐷𝑒𝑛𝑠𝑒 are linearly increased when

inputs grow. As shown in Fig. 4(b) and Fig. 4(f), such linearity

can mostly be found on GPU, which benefits from GPU’s

parallel computation architectures.

Staircase variation pattern. Execution time of some op-

erators like 𝐷𝑒𝑛𝑠𝑒 , 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 always tend to staircase in-

crease when inputs grow. As shown in Fig. 4(e) and Fig.

4(g), such staircase variation can mostly be found on CPU

environments.

Constant pattern. For some operators like 𝑆𝑝𝑙𝑖𝑡 and

𝐷𝑒𝑛𝑠𝑒 , the execution time can be treated as a constant in

some partition dimensions. As shown in Fig. 4(c), Fig. 4(d)

and Fig. 4(h), changing 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 or 𝐻𝑊 does not change

𝑡 (𝑜𝑝𝑖 , 𝑟𝑘 ).

Given performance patterns, the next step is to find the

performance pattern and partition ratio (𝛼, 𝛽) for each op-

erator 𝑜𝑝𝑖 . All performance data are collected in an offline

manner, and we believe is general enough to support new

DL models since time-consuming operators are highly the

same (e.g., 𝐶𝑜𝑛𝑣2𝐷 in CNNs,𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 in RNNs)

Step 1: sampling a specified operator execution time
on CPU or GPU. An operator 𝑜𝑝𝑖 can receive different

shapes of tensors (Table 2), and we sample the specified

operator’s execution time with each certain shape. For ex-

ample, when 𝐶𝑜𝑛𝑣2𝐷 takes a 244 × 244 image with 3 input

channels, we can sample its execution time by setting its

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 from 1 to 1024. After that, we can get performance

data of 𝐶𝑜𝑛𝑣2𝐷 with different tensors.

Step 2: selecting a performance pattern with least
errors. We construct three categorized performance patterns

as described above, and then use performance data (Step 1) to

calculate estimation errors of three patterns for an operator.

Here, the performance pattern with least error is the target

we used for the operator.

Step 3: estimating an operator’s performance when
partitioning. For an operator𝑜𝑝𝑖 with a certain input tensor,
we try any possible partition ratio 𝑟𝑎𝑡𝑖𝑜 = (𝛼, 𝛽), where
(𝛼, 𝛽) can vary from (1, 0) to (0, 1) with a certain span (0.01

in practice) on different partition dimension 𝑑 , separately

(Table 2). Then each sub-operator will get a tensor 𝛼𝑑 or

𝛽𝑑 , which its performance have been widely evaluated in

the selected pattern. We can use that pattern to accurately

estimate each sub-operator’s performance on heterogeneous

resource, and variables in Eqs. 1 to 3 can be calculated and

they can be used for further optimization.

Algorithm 1 shows our performance pattern matching

process. For an operator 𝑜𝑝𝑖 with input tensors 𝑖𝑛𝑝𝑢𝑡 on

resource 𝑟𝑘 , we first evaluate howwell our three performance

patterns match operator performance (Lines 1-5), then find
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a partition dimension 𝑑 that has least execution time (Lines

6-10).

Algorithm 1 Performance pattern matching.

1: function PatternMatch(𝑜𝑝𝑖 , 𝑖𝑛𝑝𝑢𝑡𝑠 , 𝑅)

2: Select partition dimensions {𝑑} from 𝑖𝑛𝑝𝑢𝑡𝑠

3: for 𝑑 in {𝑑} do
4: Sample 𝑜𝑝𝑖 execution time on 𝑑 .

5: Build three categorized patterns for 𝑜𝑝𝑖 .

6: For 𝑟𝑘 ∈ 𝑅, get a matched pattern 𝑝𝑡 (𝑜𝑝𝑖 , 𝑑, 𝑟𝑘 )
7: end for
8: Select a 𝑑 , get 𝑝𝑡 (𝑜𝑝𝑖 , 𝑑, 𝑟𝑘 ) with least execution time

9: Return 𝑝𝑡 (𝑜𝑝𝑖 , 𝑑, 𝑟𝑘 )
10: end function

3.3 Minimizing Overall Execution Time
We now show how to calculate the optimal 𝑟𝑎𝑡𝑖𝑜 = (𝛼, 𝛽)
for each operator 𝑜𝑝𝑖 separately. we need to find (𝛼, 𝛽) that
makes:

𝑀𝑖𝑛 𝜀, 𝑠 .𝑡 . :

|𝑡 (𝑜𝑝𝐺𝑃𝑈
𝑖 (𝛽𝑑),𝐺𝑃𝑈 ) − 𝑡 (𝑜𝑝𝐶𝑃𝑈𝑖 (𝛼𝑑),𝐶𝑃𝑈 ) | < 𝜀

𝜀 > 0

(5)

Here, a minimized 𝜀 means almost the same execution time

of two sub-operators with the partition ratio (𝛼, 𝛽) on di-

mension 𝑑 . It implies that inputs have been well partitioned

and heterogeneous resources can be efficiently used. The

calculation process can be selected from performance data

estimated from Step3 (Section 3.2). However, separately find-
ing the optimal partition ratios for all operators does not

mean we can meet the goal in Eq. 4 due to the two reasons:

1. Some operators may run very fast, communication

overhead introduced by partitioning these operators

may slow down operator execution.

2. Separate partition optimization only gets the local opti-

mal for one operator, it may not achieve global optimal

results for all operators.

To efficiently partition operators, we use two mechanisms

as follows:

Partitioningkey operators to reduce communication
overhead. As shown in Eq. 4, our goal is to minimize overall

operator execution time. As shown in TABLE 2, we find some

operators consume 95% of the DL’s inference time after our

offline performance evaluation, while they only take 5-35%

of operator numbers in a DL model. In this paper, if one or

some operators consume > 95% of DL inference time, we

call it or them as key operators.
Collaboratively Tuning partition ratios to achieve

global optimization. For each key operator 𝑜𝑝𝑖 in 𝐺 , find-

ing partition ratios with nearly equal execution time on CPU

and GPU does not mean we can get the most performance

improvement. As the example shown in Fig. 5, 𝐺 has two

DL kind

Operator

name

Partition

dimension

Value space

CNN,Yolo

Conv2D, Relu

BatchNorm,

Transpose

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 (1,1024)

𝐻𝑊
(32,32)-

(299,299)

RNN

Sigmoid,

Tanh, Add,

Concat, Split

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 (1,512)

𝐻𝑊
(1,4)-

(1,256)

Multiple

Dense

𝐻𝑊1𝑊2

(1,1,1)-

(4096,4096,

4096)

Transformers

Transpose 𝐻𝑊
(1,1)-

(4096,4096)

Dense 𝐻𝑊1𝑊2

(1,1,1)-

(4096,4096,

4096)

Table 2. Partitioning key operators to reduce communica-

tion overhead.

operators 𝑜𝑝1 and 𝑜𝑝2, 𝑜𝑝1 and 𝑜𝑝2 can be partitioned with

equal execution time on CPU and GPU, respectively. How-

ever, if we collaboratively consider them both and partition

less input tensors on GPU for 𝑜𝑝1, the total performance

can be further improved. With this tuning, it will cause a

longer execution time for 𝑜𝑝1, but 𝑜𝑝2 can use more GPU

with higher speedups.

CPU

GPU

Op1

Op2Op1

Op2 CPU

GPU

Op1

Op2Op1

Op2

Figure 5. Tuning partition ratios to improve performance.

To tune partition ratios, we inject graph executor in TVM

with a tuner, which can collaboratively change partition ra-

tios of two adjacent operators. The tuner will try to adjust

partition ratios of two operators to find if it can bring more

performance improvement. When we partition the 𝑖th op-

erator in 𝐺 ,
∑

𝑖 𝑡 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅) of the first 𝑖 operators can be

calculated by the following three conditions:

C1) 𝑖 = 1 : 𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅). In 𝐺 , it means there is only

one operator partitioned currently, and we do not consider

collaboratively tuning.

C2) 𝑖 = 2 : 𝑇𝑢𝑛𝑒𝑇 (𝑜𝑝𝑖−1, 𝑜𝑝𝑖 , 𝑅). If collaboratively tuning

partition ratios of 𝑜𝑝𝑖−1 and 𝑜𝑝𝑖 can reduce more execution

time, we use this result as the current execution time in 𝐺 .

Otherwise we just partition 𝑜𝑝𝑖−1 and 𝑜𝑝𝑖 separately, and

current execution time is 𝑇 (𝑝 (𝑜𝑝𝑖−1, 𝑑), 𝑅) +𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅).
Here, the key problem is how to get collaboratively parti-

tioned execution time. We implement 𝑇𝑢𝑛𝑒𝑇 (𝑜𝑝𝑖−1, 𝑜𝑝𝑖 , 𝑅)
in Algorithm 2. Based on performance patterns, we can get
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all operator performance with any partition ratios separately

(Line 1-9), then we simultaneous tune one operator’s 𝛼 and

the other one’s 𝛽 to see if it can reduce more execution time

(Line 10-13).

C3) 𝑖 > 2 : 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑙𝑦 𝑢𝑠𝑖𝑛𝑔 𝐶1 𝑎𝑛𝑑 𝐶2. For more op-

erators, we just recursively use the first two conditions to

find the least current execution time when partitioning last

one (𝑜𝑝𝑖 ) or two operators (𝑜𝑝𝑖 , 𝑜𝑝𝑖−1) with collaboratively

tuning.

Algorithm 2 Collaboratively tuning partition ratios.

1: function TuneT(𝑜𝑝𝑖−1, 𝑜𝑝𝑖 , 𝑅)
2: (𝛼𝑖−1, 𝛽𝑖−1) = (0, 1), (𝛼𝑖 , 𝛽𝑖 ) = (0, 1), 𝑠𝑝𝑎𝑛 = 0.01

3: Get optimal partition dimensions 𝑑𝑖−1, 𝑑𝑖 from

𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ

4: for 𝛼𝑖−1, 𝛼𝑖 in [0, 1] do
5: 𝛽𝑖−1 = 1 − 𝛼𝑖−1, 𝛽𝑖 = 1 − 𝛼𝑖
6: Estimate 𝑜𝑝𝑖−1, 𝑜𝑝𝑖 execution time on 𝑑 with dif-

ferent partition ratios (𝛼𝑖−1, 𝛽𝑖−1), (𝛼𝑖 , 𝛽𝑖 ).
7: end for
8: Separately find optimal partition ratios (𝛼𝑖−1, 𝛽𝑖−1),
(𝛼𝑖 , 𝛽𝑖 )

9: 𝑡𝑢𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = 𝑇 (𝑝 (𝑜𝑝𝑖−1, 𝑑), 𝑅) +𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅)
10: Increase 𝛼𝑖−1 and 𝛽𝑖 , then update 𝑡𝑢𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 with

least execution time.

11: Increase 𝛽𝑖−1 and 𝛼𝑖 , then update 𝑡𝑢𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 with

least execution time.

12: Return 𝑡𝑢𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒

13: end function

4 Implementation And Discussion
4.1 Implementation
Algorithm 3 provides the details of how EOP works. It can

calculate all time variables of our problem formula in Eq. 1

and Eq. 3, then our goal in Eq. 4 can be resolved. EOP esti-

mates each operator’s execution time after partition (Line 1-

5), and uses collaboratively tuning mechanisms to get global

optimization (Line 6-9), a new computation graph can be

exported and deployed on edge servers (Line 10-11).

EOP is implemented on TVM 0.8.0dev [6] (1800 LoC) with

its code is written in Python 3.8.1, and is open-sourced in the

community. By using TVM compatible interfaces of main-

stream DL frameworks and NetworkX [10], EOP uses four

main components to accurately estimate operator partition

performance and reduce communication overhead in Fig. 6.

EOP can generate computation graphs from mainstream

DL frameworks. The Pattern Modeler estimates key oper-

ator performance and analyzes patterns with minimal er-

ror. Based on these patterns, the Performance Estimator
can accurately estimate the execution time of key operators.

Then, the Key Operator Partitioner and Partition Ratio
Tuner can be applied to these operators to maximize their

Algorithm 3 The algorithm of partitioning key operators

and tuning partition ratios.

Input: A computation Graph 𝐺 = {𝑜𝑝𝑖 }.
A set of resources 𝑅 = {𝐶𝑃𝑈 ,𝐺𝑃𝑈 }.

Output: A computation after operator partition: 𝐺 ′

Overall operator execution time of 𝐺 ′: 𝐴𝑇 (𝐺 ′, 𝑅)
1: 𝐺 ′ = {},𝑀𝑇 (𝐺 ′, 𝑅) = 0.

2: for 𝑜𝑝𝑖 in 𝐺 do
3: 𝑡 (𝑜𝑝𝑖 , 𝑟𝑘 ) ← 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑜𝑝𝑖 , 𝑖𝑛𝑝𝑢𝑡, 𝑅).
4: 𝑐𝑚(𝑜𝑝𝐶𝑃𝑈𝑖 , 𝑜𝑝𝐺𝑃𝑈

𝑖 ) ← 𝑆𝑝𝑙𝑖𝑡 , 𝐷𝑒𝑣𝑖𝑐𝑒_𝑐𝑜𝑝𝑦 and

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒

5: 𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅) ← 𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑐𝑚(𝑜𝑝𝐶𝑃𝑈𝑖 , 𝑜𝑝𝐺𝑃𝑈
𝑖 )

6: 𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅) ← 𝑡𝑢𝑛𝑒𝑇 (𝑜𝑝𝑖 , 𝑜𝑝𝑖−1)
7: Update 𝐺 ′← 𝑝 (𝑜𝑝𝑖 , 𝑑)
8: Update 𝐴𝑇 (𝐺 ′, 𝑅) ← 𝑇 (𝑝 (𝑜𝑝𝑖 , 𝑑), 𝑅)
9: end for
10: For non-key operators𝑜𝑝 𝑗 in𝐺 , update𝐺 ′ and𝐴𝑇 (𝐺 ′, 𝑅)

according to 𝑜𝑝 𝑗 and 𝑡 (𝑜𝑝 𝑗 , 𝑅), respectively.
11: Return 𝐺 ′, 𝐴𝑇 (𝐺 ′, 𝑅)

performance. After that, the optimized computation graph

for all key operators can be deployed and DL models can be

run on heterogeneous resources.
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Figure 6. The EOP architecture.

4.2 Discussion
Stable inputs for DL inferences. A typical scenario emerg-

ing from real workloads is that a DL inference may run many

times with only a few adjustments. So we can assume that the
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input is stable and reuse the partitioned results to improve

performance.

Coverage of three categorized patterns. Our three cat-
egorized patterns described in Section 3 can estimate all

key operator performance in modern CNN, RNN and Trans-

formers DL models. By using TVM compatible interfaces [6],

we can also support new operators by more performance

evaluation in an offline manner. Sample and pattern based

performance estimation has proven to have a high accuracy

[7, 31].

General partition dimensions. Partitioning 𝐶𝑜𝑛𝑣2𝐷s

in CNN can be done bymany dimensions, such as input/output

channels [15, 29, 31]. In this paper, we focus on three dimen-

sions supported by majority of operators, and we think our

approach can be easily extended to adjust more dimensions.

Fine-grained DL data parallelism. Partitioning opera-

tors on edge servers is indeed a kind of fine-grained DL data

parallelism [28], and it can coexist with others like model

parallelism [14, 17] and pipeline parallelism [19].

5 Evaluation
In this section, we evaluate the effectiveness of EOP and try

to answer the following questions:

1. Can EOP estimate the performance of different oper-

ators accurately with different partition dimensions

(𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 𝐻𝑊 and 𝐻𝑊1𝑊2) in a heterogeneous envi-

ronment?

2. Can EOP efficiently reduce the execution time for all

operators of various DL models?

3. Can EOP still reduce the execution time when varying

the settings of DL models?

4. How effective are the two mechanisms of EOP (parti-

tioning key operator and tuning partition ratios)?

5.1 Experiment Setup
Environment. All operator performance data and EOP’s

efficiency have been evaluated on a typical edge server with

one CPU (Intel(R) i7-7700 3.60GHz 4core, 32GB RAM) and

one GPU (NVidia RTX 2060, 1920 cuda cores, 6GB RAM).

CPU and GPU are connected by PCIe 3.0 ×16, and the oper-

ating system is Ubuntu 18.04.

Workloads. To evaluate the performance improvement

of EOP, our experiments compare three kinds of DL models:

1) RNNs [1]: with a lot of open-source DL models imple-

mented on TorchText [1], we select LSTM and GRU as RNN

workloads.

2) Transformers [26]: since a lot of pre-trained DL mod-

els in Transformers are based on BERT, we use BERT as

Transformers workload.

3) CNNs: To prove if EOP can get comparable performance

improvement on traditional CNNs, we select Inception v3,

MobileNet from TVM testing [3], and Yolo v3 from Yolo

official [23].

Workload kind Parameters

RNN

LSTM: seq_len=1; input_size=80;

num_layers=2; hidden_size=64

num_dimensions=1;

GRU: seq_len=1; input_size=80;

num_dimensions=1; hidden_size=64

num_layers=2;

Transformers

BERT: vocab_size=32000;

hidden_size=768;

num_hidden_layers=12;

num_attention_heads=12;

intermediate_size=3072

CNN

Inception v3: input_shape=(299,299)

MoblieNet: input_shape=(224,224)

Yolo v3: (c,h,w)=(3,640,640)

Table 3. Parameters of different workloads: RNN, Trans-

formers and CNN.

TABLE 3 shows the workload parameters used in our ex-

periments. We choose 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 16 as a common setting in

DL inference. Such parameters are set by original implemen-

tations in TVM [6] and Pytorch [20]. We may change some

parameters (e.g., input shape) in Section 5.4 to see if EOP

can still get performance improvement. To keep the experi-

ment data stable, we run each operator hundreds of times

for each parameter, and record its average execution time by

using TVM time evaluator [2]. Note that, the loading time

of operators are not included when estimating operator per-

formance. The communication overhead 𝑐𝑚(𝑜𝑝𝐶𝑃𝑈𝑖 , 𝑜𝑝𝐺𝑃𝑈
𝑖 )

are from the estimations of operators𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 , 𝑆𝑝𝑙𝑖𝑡 and

𝐷𝑒𝑣𝑖𝑐𝑒_𝑐𝑜𝑝𝑦, and we use it to calculate 𝐴𝑇 (𝐺, 𝑅).
Existing approaches. We compare EOP with the follow-

ing four approaches:

1. CPU baseline: it runs workloads only on CPUs with-

out operator partitioning.

2. GPU baseline: it runs workloads only on GPUs with-

out operator partitioning.

3. Equal [11, 28]: it implements equal partition ratios for

all operators on heterogeneous resources.

4. Fixed [25, 29]: it implements fixed partition ratios for

operators in a sub-graph.

Comparing with the above approaches, EOP uses three

categorized patterns to estimate the operator execution time,

and finds key operators with collaboratively tuning partition

ratios.

Mechanisms in EOP. Twomechanisms (partitioning key

operators and tuning partition ratios) are used in EOP to re-

duce execution time, and we use three conditions to evaluate

them:

1. Condition 1: it finds key operators by balancing the

execution time of sub-operators on CPU and GPU.
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Figure 7. Operator speedups based on their execution time estimation.
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Figure 8. Overall execution time reduction on LSTM, GRU

and BERT.

2. Condition 2: it tunes two adjacent operators without
partitioning according to their GPU to CPU speedups.

3. Condition 3: it combines the above two mechanisms.

5.2 Comparison of Estimated Operator Execution
Time for some key operators.

Metrics.We use operator speedupofGPU toCPU 𝑠𝑝 (𝑜𝑝𝑖 ) =
𝑡 (𝑜𝑝𝑖 ,𝐶𝑃𝑈 )/𝑡 (𝑜𝑝𝑖 ,𝐺𝑃𝑈 ) to evaluate whether EOP can ac-

curately estimate operator execution time. When varying

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 𝐻𝑊 and 𝐻𝑊1𝑊2, if speedup values from EOP
estimation have almost the same as the ground truth
speedup values, EOP can accurately estimate operator exe-

cution time.

Based on estimated operator execution time and catego-

rized performance patterns, EOP can easily find key opera-

tors. Fig. 7 shows the key operator speedups when 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 ,

𝐻𝑊 and 𝐻𝑊1𝑊2 increase. Here, dotted lines denote the

ground truth speedup values and solid lines denote our

estimation results. A lot of key operators have dynamic

speedups, which means the fixed speedup used by existing

approach is inaccurate. Our observation as follows.

1) Only 𝑠𝑝𝑙𝑖𝑡 has almost fixed speedups in Fig. 7(a) when

increasing 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 . Other operators like 𝑑𝑒𝑛𝑠𝑒 have large

speedup variations.

2) When increasing 𝐻𝑊1𝑊2 and 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 for 𝑑𝑒𝑛𝑠𝑒 in

Fig. 7(a) and Fig. 7(c), 𝑑𝑒𝑛𝑠𝑒 has different speedups, which

denotes that partitioning by different dimensions may get

diverse performance improvement.

3) 𝑎𝑑𝑑 , 𝑡𝑎𝑛ℎ and 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 in LSTM vary with different

𝐻𝑊 , which are caused by their different performance pat-

terns on heterogeneous resources.

From the above observations, it is clear that EOP can es-

timate these speedup variations accurately with relatively

small errors. Whereas other approaches can only support

fixed speedups because they use linear patterns.

5.3 Comparison with Other Approaches
Metrics. We use overall execution time𝐴𝑇 (𝐺, 𝑅) in Eq. 4

to evaluate the performance improvement. Here, a smaller

value of 𝐴𝑇 (𝐺, 𝑅) indicates a better performance of DL in-

ference.

Fig. 8 shows the results of overall execution time. Com-

paring with CPU and GPU baselines, EOP can improve per-

formance of 1.67 − 3.53× and 1.67 − 2.9×, respectively. This
implies that exploiting the partition mechanism can bring

large performance improvements, since key operators can

take full advantage of heterogeneous resources. Comparing

with existing approaches, EOP can also reduce 1.25 − 1.97×
overall execution time. This is because, in combination of

various novel techniques, EOP can partition operators with

minimized communication overhead.

DL model/

time(𝜇𝑠)
Equal Fixed EOP Effect

Inception v3 4999.43 2539.66 1498.49 1.69-3.3

MobileNet 164.20 43.29 33.57 1.29-4.96

Yolo v3 827.66 234.02 221.51 1.06-3.74

Table 4. Comparable overall execution time reduction for

Inception v3, MobileNet and Yolo v3.

In addition, TABLE 4 shows the performance improvement

of EOP over the traditional 𝐶𝑜𝑛𝑣2𝐷 dominated DL models.
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(c) Varying the number of layers

Figure 9. The performance improvement of LSTM and GRU (both of them have almost the same input tensors and operators).

Workload Operator (𝛼 ,𝛽) dimension

RNNs

split (0.62,0.38) 𝐻𝑊

concatenate (0.23,0.77) 𝐻𝑊

dense (0.15,0.85) batch size

add (0.90.0.10) batch size

sigmoid (0.80,0.20) 𝐻𝑊

tanh (0.87,0.12) 𝐻𝑊

multiply (0.18,0.22) 𝐻𝑊1𝑊2

substract (0.32,0.68) batch size

Transformers

transpose (0.70,0.30) 𝐻𝑊1𝑊2

dense (0.28,0.72) 𝐻𝑊1𝑊2

Table 5. Partition ratios and dimensions of key operators in

RNNs (LSTM, GRU) and Transformers (BERT).

Since𝐶𝑜𝑛𝑣2𝐷 consumes more than 99% of the inference time,

EOP can obtain a 1.06× improvement for Yolo v3. For other

CNN models with a smaller proportion of 𝐶𝑜𝑛𝑣2𝐷 , EOP can

improve 𝐴𝑇 (𝐺, 𝑅) by 1.2 − 1.6×. Such results imply that

EOP can also partition operators in CNNs with comparable

performance to that of existing approaches.

TABLE 5 shows the partitioned key operators. For opera-

tors in the same subgraph, we find that operators 𝑠𝑝𝑙𝑖𝑡 , 𝑎𝑑𝑑 ,

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 , 𝑡𝑎𝑛ℎ run faster on the CPU than on the GPU, so we

need to partitionmore inputs on the CPU (𝛼 > 𝛽). In contrast,

operators 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 , 𝑑𝑒𝑛𝑠𝑒 ,𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 and 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑐𝑡 have

more partitions on the GPU (𝛼 < 𝛽). All of these operators

take more than 5% of the overall execution time. Note that

the operator 𝑑𝑒𝑛𝑠𝑒 in Transformers and RNNs have differ-

ent partitioning ratios and dimensions, which means that it

may have dynamic speedups when the partition dimensions

change. We believe that this feature has not been studied in

existing approaches, and that this is one of the reasons for

their low accuracy. In addition, the key operator accounts

for only 8 − 25% of the total operators, which shows that an-

alyzing key operators can effectively reduce communication

overhead.

5.4 Comparison with Diverse DL Models
Metrics. DL developers may change the settings of DL mod-

els frequently in different scenarios. These settings may af-

fect the performance of EOP. In this case, the following differ-

ent settings may change the number of inputs and operators

in𝐺 , which we denote it as𝐺 ′. If we can still get a minimized

𝐴𝑇 (𝐺 ′, 𝑅) than existing approaches’, EOP can work well on

diverse DL models.

1. Varying 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒: 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 can be changed accord-

ing to how heavy their workloads are.

2. Varying input shapes: Such shapes are differentwhen
DL models process images and sentences in inference

scenarios.

3. Varying the number of layers: Layers can be also

different with the requirements of DL inference ac-

curacy. Note that CNNs and Transformers may have

different kinds of layers.

Varying 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 in RNNs. Fig. 9(a) shows the overall
execution time for LSTM and GRU 𝐴𝑇 (𝐺 ′, 𝑅) by varying

the value of 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 (8, 16, 32, 64 and 128). EOP improves

performance by 1.5 − 2.9× compared to CPU and GPU base-

lines. When increasing the 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , existing approaches

only have a small performance improvement. The overall ex-

ecution time of all approaches shows a linear growth pattern

when 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 < 64, while it decreases when 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 <

128. This means that the execution time of RNNs may have

a staircase pattern, which is different from the linearity in

CNNs. Therefore, the assumption of a linear relationship be-

tween operator execution time and input is wrong for RNN

models, and it hinders existing approaches [25, 28, 29] from

further improving performance.

Varying input shape in RNNs. By setting 𝐻𝑊 from

(1, 40) to (1, 200) in steps of 40, Fig. 9(b) shows how the

change in 𝐻𝑊 affects performance. When the input shape

becomes larger, the execution time of all approaches increase

flat, and EOP maintains an improvement of 1.23×. CPU base-

lines grow faster than GPU’s, which means that the speedup

of LSTM is not fixed. When 𝐻𝑊 is between (1, 120) and
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Figure 10. The performance improvement of BERT when

varying the number of attention layers.

(1, 200), EOP reduces the execution time almost as much as

LSTM, which means that EOP is more likely to maintain a

steady improvement when the input data shape changes in

a small range, even if its baseline increases.

Varying the number of layers in RNNs and Trans-
formers. As shown in Fig. 9(c), when the number of layers

is set to 2, 4, 6 and 8, the execution time of both LSTM and

GRU linearly increases. We can see that EOP maintains a

performance improvement of 1.1 − 1.25×. This is because
the communication overhead consumes a small percentage

of the overall execution time, and the key operators in the

new layers are the same as in the old ones.

As shown in Fig. 10, we change the number of attention

layers in BERT from 12 to 192, and the result shows that all

execution time change by less than 1% and EOP maintains

an improvement of 1.4×. Similar conclusions can also be

drawn from changing hidden layers. Such results imply that

the operators in the hidden and header layers are not key

operators and changing these layers has little impact on

inference performance. Moreover, if the DL developer does

not change the structure of BERT, EOP can obtain stable and

huge improvements without considering too many non-key

operators.

5.5 Comparison with Different EOP Mechanisms
Metrics. We now compare overall execution time reduc-
tion 𝐴𝑇 (𝐺, 𝑅) in Eq. 4 by using different partition mecha-

nisms (Condition 1 to 3 in Section 5.1), respectively. We

findwhichmechanisms canminimize𝐴𝑇 (𝐺, 𝑅), and evaluate
all mechanisms on BERT.

Fig. 11 shows the comparison results. We observe that

any of the mechanisms can reduce execution time, and us-

ing them both (Condition 3) can obtain an improvement

of 1.45×. The reason why only using one mechanism (ei-

ther Condition 1 or 2) gets suboptimal performance can be

explained in two ways.

1) The partitioning key operator mechanism (Condition
1) in EOP makes an operator use only the CPU or GPU, so
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Figure 11. The performance improvement of BERT infer-

ence when using different mechanism in EOP.

the other resource is idle at the same time and operators

cannot use the full computational power.

2) The tuning partition ratios mechanism (Condition 2)
enables each operator to use heterogeneous resources at the

same time, but the resources may be overused by non-key

operators, which is not efficient.

6 Related Work
EOP improves DL inference performance on edge servers

by: 1) accurately estimating operator execution on heteroge-

neous resources, and 2) efficiently partitioning key operators.

Note that a lot of work are mainly on edge-cloud collabora-

tions [12, 29, 30] and EOP is non-intrusion with them. As

such, we discuss the related work from these two research

aspects.

Operator estimation. Recent researches can be largely

categorized into two kinds. The first deeply studies software

and hardware issues that may affect operator execution time,

and consider these issues to do estimation [8, 18]. While

Talos [27] and DUET [32] mainly concentrate on hardware

speedup issues. Most of them aim at the scenario with fixed

operator inputs, and they cannot be directly used for operator

partition since DL inputs may change.

The second collects a lot of performance data of DLs, and

builds estimation models: nn-meter [31] uses random sam-

pling to estimate a subgraph, Habitat [7] combines learning

and heuristics based estimators to support heterogeneous

resources. These data are always for subgraphs or 𝐶𝑜𝑛𝑣2𝐷s,

which are much different from operators’ in various DL mod-

els.

To support various DL inferences, EOP studies three op-

erator performance variation patterns to support operator

estimation with inputs change. While it uses operator se-

quential and repeated execution to get stable performance

data.

Operator partition. There have been subgraph-level and
operator-level partition approaches when DL inference runs
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on heterogeneous resources. Subgraph-level partition ap-

proaches [15, 25, 29] consider computation and communi-

cation both, and always concentrate on subgraphs in CNNs.

They are not general enough to support operator partition

in other DL models. Other approaches like Super [13], Eagle

[17] and Optimus [5] supports subgraph-level without par-

tition, and EOP can be integrated to these approaches and

improve more performance.

Operator-level partition approaches can be implemented

by fastT [28], Grnn [11] and 𝜇Layer [16]. They do a lot of

optimizations like partition for operators running on homo-

geneous resources. CPU and GPU are considered separately

or regarded same computation throughput. Our partitioned

operators can use these optimizations (always implemented

on TVM [6]) and support heterogeneous resources.

EOP is a new efficient partition approach, it selects a few

key operators to partition. Then EOP provides a partition

ratio tuning conditions to make more resources consumed

by high speedup operators, which can further improve per-

formance.

7 Conclusion
Existing operator partition approaches either only consider

homogeneous resources or just focus on optimizations of

traditional CNNs, which is inefficient. In addition, they can

hardly get accurate operator execution time by linear perfor-

mance patterns. Thus, we provide EOP, an efficient operator

partition approach, which can accurately estimate opera-

tor execution with three performance variation patterns,

and partition key operators to bring more performance im-

provement with reduced overhead. In future work, EOP will

support more partition scenarios when using heterogeneous

edge devices and edge-cloud communication.
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