
Aladdin: Optimized Maximum Flow Management
for Shared Production Clusters

Abstract—The rise in popularity of long-lived applications
(LLAs), such as deep learning and latency-sensitive online Web
services, has brought new challenges for cluster schedulers in
shared production environments. Scheduling LLAs needs to
support complex placement constraints (e.g., to run multiple
containers of an application on different machines) and larg-
er degrees of parallelism to provide global optimization. But
existing schedulers usually suffer severe constraint violations,
high latency and low resource efficiency. This paper describes
Aladdin, a novel cluster scheduler that can maximize resource
efficiency while avoiding constraint violations: (i) it proposes
a multidimensional and nonlinear capacity function to support
constraint expressions; (ii) it applies an optimized maximum flow
algorithm to improve resource efficiency. Experiments with an
Alibaba workload trace from a 10,000-machine cluster show that
Aladdin can reduce violated constraints by as mush as 20%.
Meanwhile, it improves resource efficiency by 50% compared

Heng WU, Wenbo ZHANG*, Yuanjia XU, Hao XIANG, Tao HUANG,

Institute of Software
Chinese Academy of Sciences

Beijing, China

{wuheng,zhangwenbo,xuyuanjia2017,xianghao16,tao}@otcaix.iscas.ac.cn

Haiyang DING, Zheng ZHANG

with state-of-the-art schedulers.
Index Terms—Scheduling, Maximum flow, Long-lived applica-

tions, Resource efficiency

I. INTRODUCTION

Long-lived applications (LLAs), including deep learning

[1], streaming [2], and latency-sensitive online Web appli-

cations [3] are increasingly running on container-based pro-

duction clusters [4]. Each LLA comprises one or more long-

lived containers to encapsulate hardware resources (e.g., CPU

and memory), and these containers are allocated and used for

durations ranging from hours to months [5]. In this context,

cluster schedulers face the challenges of more complex place-

ment constraints [6] and larger degrees of parallelism (e.g.,

to augment the capabilities of applications by 100 on 11.11

e-commerce holiday [7] or Black Friday [8]). Prior efforts

primarily focus on short-lived applications (e.g., MapReduce

batch jobs, In-memory Spark querying) to guarantee low

latency [5, 9–11]. However, these approaches may suffer

severe constraint violations and high latency for LLAs. For

example, Medea [6] reveals that constraint-oblivious methods

incur high latency compared with constraint-aware ones by up

to 3.9× for the 99th percentile. This means enterprises would

lose billions of dollars in annual advertising revenues [12] if

online applications are crucial and latency-sensitive, such as

Google Search.

Corresponding author: zhangwenbo@otcaix.iscas.ac.cn

Nowadays, about 35% of the clusters at Microsoft are

used exclusively for LLAs [6]. If schedulers cannot express

constraints well, large-scale enterprises like Alibaba should at

least double the size of their clusters by paying extra tens

of million dollars per years [13]. In the Alibaba trace, LLA

constraints mainly include anti-affinity and priority. We find

that nearly 70% of LLAs have anti-affinity constraints, which

means containers within or across applications should run on

different machines for performance or reliability requirements

[14, 15]. In addition, approximately 15% of containers should

meet priority constraints, and a container with a high priority

can preempt those with low priorities in the case of placement

conflicts [16–18]. Recently, two novel studies were proposed

to address the challenges of complex placement constraints. As

shown in Figure 1, Firmament [9] can support LLAs by multi-

round flow-based scheduling with a timeout mechanism [16].

However, it may encounter continuous conflicts and result

in low scheduling quality, which indicates that the cluster

needs more resources for those unscheduled tasks. Medea [6]

presents an integer linear program (ILP) approach to balance

resource efficiency and constraint violations by varied weights,

but it could tolerate a few violated constraints if the weighted

values are not optimized. A vast amount of research effort has

argued that the weight optimization problem is very difficult

to solve [16–18].

Despite these observations, support for LLAs in existing

schedulers remains rudimentary. We describe the design and

implementation of Aladdin to schedule LLAs. Our key con-

tributions are as follows:

• We propose a multidimensional and nonlinear capacity

function based on a flow network model to express anti-

affinity and priority constraints.

• We design an optimized maximum-flow algorithm to

achieve high-quality placements and global objectives,

especially when massive LLAs arrive simultaneously.

• We compare our approach to state-of-the-art schedulers

with an Alibaba workload trace. Our experiments show

that Aladdin reduces constraint violations by as much as

20% and improves resource efficiency by 50%.

The rest of this paper is organized as follows. Section II

presents the problem statement and our analysis, and Section

696

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00078

(a) Container requirements (b) Firmament scheduling (c) Medea scheduling

Fig. 1: Three containers, one S0 and two S1, arrive at the same time. Each container of S1 has a higher priority, and

it is not recommended to be deployed with S0 on the same machine because of anti-affinity constraints. (a) shows the

resource requirement for each container. (b) shows the scheduling result of Firmament, S0 is unscheduled to avoid anti-affinity

constraints, although it is rescheduled many times. (c) shows the scheduling result of Medea. In order to minimize the number

of used machines, it violates an anti-affinity constraint since containers S0 and S1 run on the same machine.

III provides the design of Aladdin. Section IV depicts a

detailed overview of our maximum flow algorithm. We report

the evaluation of our approach in Section V, followed by a

discussion of the related work in Section VI. Finally, Section

VII concludes our work and points out the future direction.

II. PROBLEM STATEMENT AND ANALYSIS

A. Problem Statement

A cluster consists of fully interconnected machines, each

of which can host various LLAs. An LLA comprises sev-

eral instances (e.g., Tensorflow, Mysql) running in isolated

containers. A container is configured with a certain amount

of computing resources. When 11.11 e-commerce holiday [7]

or Black Friday [8] is approaching, companies will augment

the capabilities of applications by about 100× by scheduling

massive LLAs in parallel.

When scheduling LLAs, Aladdin satisfies all placement

constraints (anti-affinity and priority) instead of tolerating a

few constraint violations in Medea [6]. In this context, some

containers belonging to the same application should be placed

on different machines to decrease the downtime likelihood

in case of hardware failures [19]. We call this anti-affinity
within an application. Conversely, anti-affinity across ap-
plications means two LLAs should not be deployed on the

same machine to avoid critical performance interference. In

addition, all containers are classified by different priorities, and

schedulers should limit resource provisioning for low-priority

containers to avoid affecting high-priority ones. This means if

two containers which are competing for bottleneck resources

arrive at the same time, we should deploy the high-priority

one first.

Hence, Aladdin is designed to meet the following global

objectives:

• Placement constraint expression. Anti-affinity and pri-

ority should be expressed to avoid any constraint viola-

tions within or across LLAs.

• Resource efficiency. The resource utilization in pro-

duction clusters should be improved by minimizing the

number of used machines.

• Acceptable placement latency. The latency of placement

decisions should be limited to sub-seconds.

B. Problem Analysis

For given machines, we can reduce the scheduling of LLAs

to a flow network problem [20]. A typical application of

this problem involves how to find the best delivery route

from a factory to a warehouse where the road network has a

limited capacity. Further, we propose an optimized maximum

flow algorithm by replacing factories with containers and

warehouses with machines.

A maximum flow algorithm takes a directed flow network

G = (V,E) as input. Each edge (i, j) ∈ E connects two given

vertices i, j ∈ V . Each vertex v ∈ V has a multidimensional

and nonlinear capacity, denoted by c(i, j). In this case, there

are two distinct vertices in the flow network: a source s ∈ V
and a sink t ∈ V . If we find a path s → v → t without

exceeding capacity constraints on any edges, we call it a flow.

Formally, a flow in G is a function f : V×V → R that satisfies

the capacity constraint (Equation 1) and the flow conservation

(Equation 2).

0 � f(i, j) � c(i, j) (1)

∑
v∈V−{s,t}

f(i, j) =
∑

v∈V−{s,t}
f(j, i) (2)

A maximum flow algorithm like SPFA [21] routes the flow

from source s to sink t until f(i, j) = 0. But the algorithm

faces the two following challenges when scheduling LLAs:

• How to distinguish tasks with different priorities (III.B)

• How to express anti-affinity constraints (III.C)

697

Fig. 2: Aladdin design

III. ALADDIN DESIGN

In this section, we depict the flow network structure used

in Aladdin. Then, we describe the design in order to find a

flow in terms of priority and anti-affinity.

A. Flow Network Structure

Unlike Firmament [9] that uses a one-dimensional and linear

function capacity, Aladdin designs a multidimensional and

nonlinear capacity function to express placement constraints.

As shown in Figure 2, the container manager (CM) submits

LLA containers at the same time. Each submission comprises a

priority wn, a resource requirement description cn and a LLA

tag an. The machine manager (MM) collects machine runtime

statuses including anti-affinity constraints pm, deployed con-

tainers dm, available resources cm, rack names rm and cluster

names gm. The scheduler manager (SM) then solves the flow

network constructed from the outputs of CM and MM.

In the flow network, we introduce application vertices Ai,

cluster vertices Gi and rack vertices Ri to reduce the total

edges from O(|T | · |N |) to O(|T |+ |A| · |R|+ |N |), which can

optimize the placement latency significantly. For example, if

we have 100,000 containers and 10,000 machines in a cluster,

the latency would be up to several seconds. We observe that

all the containers belong to only 13,056 different applications.

Then the placement latency can be reduced to hundreds of

milliseconds because the number of edges is only about 300

thousands rather than 1 billion.

B. Supporting Priority

There are two mechanisms (preemption and migration) to

increase the flow in the maximum flow theory, but neither of

them is aware of priority constraints.

As shown in Figure 3(a), suppose that containers A and B
cannot be deployed on the same machine, noting that container

A has a higher priority and container B needs more resources.

Since the typical maximum flow algorithm is unaware of

priority constraints, container B can preempt container A.

This preemption implies that a high-priority container could

be preempted by a low-priority one to increase the flow.

Based on these observations, we introduce the weighted

flow wkf(i, j) for high-priority containers to increase the net-

work flow. This mechanism ensures high-priority ones cannot

(a) Preemption mechanism

(b) Migration mechanism

Fig. 3: Two mechanisms to increase flows

be preempted. We classify the priorities of all containers using

Equation 3, while its output are containers with the same

priority wk. Then, we set the default weight w1 to 1 for

the lowest priority containers (Equation 4). We calculate the

weighted values wk for high-priority containers according to

Equation 5, which can guarantee the weighted flow wkf(i, j)
of a high-priority container is larger than any lower-priority

ones.

x(i) = {vx, vy, ...} , vx, vy ∈ V (3)

w1 = 1 (4)

wi+1 � minimize(x(i+ 1))

maximize(x(i))
, i ≥ 1 (5)

Figure 3(b) describes the migration mechanism. We assume:

(1) container A has a higher priority, and containers A and B
cannot be deployed together; (2) container A is now running

on machine M , but container B can only be deployed to

machine M ; and (3) container A can run on both machines.

698

In this case, the low-priority container can preempt a high-

priority one, since the latter can migrate from M to N . Both

containers are deployed using the maximum flow theory. We

can obtain the expected result during the scheduling of the

LLAs although the theory is unaware of priority constraints.

Thus, we decided to follow it.

C. Supporting Anti-affinity

Capacity c(i, j) in the maximum flow theory can be denoted

as N-tuples (x1, x2, · · · , xn) [21, 22], and every element in

this tuple is a linear function. As shown in Figure 4, all edge

capacities in Aladdin are infinite except those from s to Ti (

as c(s, Ti)) and from Nj to t (as c(Nj , t)). In this context, it

is a new flow when Equation 6 is satisfied, where the symbol

≤ means the resource requirement of container Ti is less than

the resource provisioning of machine Nj .

Fig. 4: Non-linear set-based function to support anti-affinity

c(s, Ti)(x1, x2, ..., xn) � c(Nj , t)(x1, x2, ..., xn) (6)

However, it is difficult to express anti-affinity constraints by

a linear function. We use a non-linear function based on the

set theory to support anti-affinity. The symbol ≤ is extended to

represent c(s, Ti) ∈ c(Nj , t). As shown in Figure 4, we have a

mandatory requirement that containers T1 and T2 should run

on different machines, denoted by an anti-affinity constraint

p = {T1, T2, 0}. After we find the network flow from T1 to N1,

N1 updates its deployed container status to d = {T1}, which

implies that T2 is added to the blacklist of N1 according to

the anti-affinity constraint p = {T1, T2, 0}. Then, we continue

to search new network flows and we cannot deploy container

T2 to machine N1 by Equation 7 and Equation 8, even if the

latter has enough resources.

Equation 7 gives a blacklist of containers for machine Ni,

whereas Equation 8 ensures container Tj can be deployed if

it is not in the blacklist of machine Ni.

blacklist(Ni) = p.get(key), if∀key ∈ d (7)

deployed(Ti) =

{
1, Ti /∈ blacklist(Ni)

0, Ti ∈ blacklist(Ni)
(8)

IV. SCHEDULING LLAS

Our goal is to deploy as many LLAs as possible to maximize

resource efficiency and gain acceptable placement latency. We

maximize Equation 9 by subjecting it to all the properties from

Equation 1 to Equation 8. The previous section describes how

to find a network flow in terms of priority and anti-affinity to

improve resource efficiency. In this section, we present two

methods to reduce placement latency, and then describe the

algorithm and its implementation.

Maximize
∑

(i,j)∈E
wkf(i, j) (9)

A. Reducing Search Space

Placement latency depends on the number of explored paths.

Here, a path means an attempt from source vertex s, through

Ti, Aj , Gk, Rx, Ny to sink vertex t, as shown in Figure 4. We

use two techniques to reduce placement latency, as displayed

in Figure 5.

(a) Isomorphism limiting

(b) Depth limiting

Fig. 5: Two techniques to reduce placement latency

The first is isomorphism limiting (IL). All containers Ti

belonging to the same application A have the same resource

requirement. Here, we call this isomorphism. If the path from

Ti to sink vertex t is invalid because of insufficient resource

provisioning, we cannot find other valid paths from any other

containers Tj of the same application A. So, we can limit

the search space of paths when an invalid path is found. As

shown in Figure 5(a), application A consists of containers

T1, T2, · · · , Ti with the same resource requirements. The ca-

pacities of paths from source s to containers T1, T2, · · · , Ti are

equal. If Aladdin cannot find a valid flow from container T1

to machine N1 through vertices A, G, R, the other containers

T2, · · · , Ti cannot be deployed. Then Aladdin will skip the

searching of containers T2, · · · , Ti to N1.

699

The second is depth limiting (DL). When we find a valid

path from vertex Ti to vertex Nj , we certainly cannot find

another valid path to increase its flow by Equation 6. Thus,

we do not need to continue searching in this case. As shown

in Figure 5(b), the upper bound of the flow in the path from

container T1 to machine N1 is determined by the capacity of

edge {T1, A} (the rest of the capacities are larger or infinite).

This implies that the flow through vertex T1 by any other valid

paths is no larger than the capacity of edge {T1, A}. So, it is

unnecessary to search additional paths to other machines. The

algorithm neglects the red vertices in Figure 5(b) and only

arranges container T1 to machine N1.

B. Maximum Flow Algorithm

So far, we have described how to construct a flow network,

why Aladdin can meet the above complex constraints, and

what techniques can be used to reduce the searching space.

We implemented an optimized maximum flow algorithm for

Aladdin.

As shown in Algorithm 1, the maximum flow algorithm

takes a directed flow network G = (V,E) as input (see Lines

1-5). We use weighted flows to meet priority constraints, and

define a non-linear function named blacklist(
∑

i∈E Ni) to

express anti-affinity constraints (see Lines 6-10). Moreover,

we implemented two techniques to guarantee acceptable place-

ment latency and a few constraint violations (see Lines 11-32).

C. Implementation

We present a co-design architecture that can integrate Al-

addin to Kubernetes 1.11 [23]. The github source code link

is in [24]. As shown in Figure 6, the left is a Kuberentes

abstraction and the right is the Aladdin implementation, and

we can deploy them both to verify scheduling effectiveness.

The architecture consists of three key components: one events

handling center (EHC), one model adaptor (MA) and two

resolvers (RE).

Fig. 6: Aladdin’s implementation

EHC receives all kinds of changes in the LLAs’ life-

cycles and resources. Then, it forwards pre-processed events to

MA. HA decouples Kubernetes objects from their scheduling

Algorithm 1 Optimized maximum flow algorithm

Input:
Anti-affinity constraints p
Priority for Container i: wTi

Deployed container set for Machine j: dNj

Output:
The flow represents relationship between container and

machine

1: init s = startVertex

2: init e = endVertex

3: init defCapacity = INFINITE

4: init graph = create (s, e, defCapacity)

5: init flow f to 0

6: while getShortestPath() is Not NULL do
7: p = getShortestPath()

8: augment wTi
f along p

9: update balcklist(
∑

i∈E Ni) based on p, dNj

10: end while
11: Function getShortestPath

12: init minDist = INFINITY

13: for each vertex v in graph do
14: int dist(s, v) = INFINITY // from source to infinity

15: end for
16: init Q = graph.getAllVertices()

17: while Q �= φ do
18: Vertex current = Q.dequeue()

19: for vertex next ∈ neigbors(current) do
20: if dist(s, next) < dist(s,current) + dist(current,next)

AND vertex /∈ balcklist(
∑

i∈E Ni) then
21: minDist = dist (s, next)

22: end if
23: if current.isIsomorphismlimiting() then
24: Break
25: end if
26: end for
27: if current.isDepthLimiting() then
28: Break
29: end if
30: end while
31: return path
32: END Function

implementation by delegating the watching and binding APIs

[23]. RE integrates Aladdin to map containers to resources.

D. Discussion

Modern clusters are used for both long- and short- lived

applications. Short-lived applications are latency-sensitive and

have been studied by many researchers. Aladdin also uses

a traditional task-based scheduler for short-lived containers.

Moreover, Aladdin can express complex constraints for LLAs.

But unlike classical maximum flow algorithms, a container

with 4CPUs cannot be broken down into two or more smaller

containers deployed respectively. We assume such impartible

700

flows could affect the algorithm’s robustness, though our

algorithm is working well in Alibaba traces.

Time Complexity. The algorithm in Aladdin is similar to

typical flow-based algorithms [21] like SPFA or Bellman-Ford.

The worst time complexity is O(V E2c) and the average is

O(V Ec), where V denotes the number of vertices, E is the

number of edges and c represents the dimension counts of

each edge. Adding additional constraints such as memory or

heterogeneous resources leads to increased c. However, the

effect of c on time complexity is linear and much smaller

than E, so it has a limited impact on algorithm performance.

The cost of migration and preemption. Figure 7 demon-

strates how preemptions and migrations can affect time com-

plexity with heterogeneous resources. Tasks S0, S1, S2, S3 in

Figure 7(a) have two-dimensional resource requirements. As

shown in Figure 7(b), Aladdin first schedules them sequential-

ly without preemption, and receives notification of the failure

of deploying task S3. Then Aladdin migrates tasks S0, S1,

S2 to the other machine in Figure 7(c). Rescheduling incurs

a cost and it would double the scheduling time. But the cost

is bound to the worst complexity O(V E2c).

(a) Container requirements

(b) Aladdin scheduling without preemptions and migrations

(c) Aladdin rescheduling to support preemptions and migrations

Fig. 7: An example of how preemptions and migrations affect

Aladdin’s time complexity

V. EVALUATION

We now evaluate how well Aladdin meets its goals under

the LLAs workload:

1) How does Aladdin’s placement quality compared with

state-of-the-art cluster schedulers?

2) Can Aladdin improve resource efficiency compared with

other schedulers?

3) How does Aladdin’s placement latency (algorithm over-

head), and is it acceptable?

A. Methodology

Workload. We replay a production workload trace from a

10,000-machine Alibaba cluster. These machines are homoge-

neous with 32 CPU and 64GB memory. As shown in Figure

8(a), it includes about 100,000 tasks belonging to 13,056

LLAs, and nearly 64% of LLAs only have a single instance

(container). Moreover, we find that 85% of LLAs have less

than 50 containers and a few LLAs are composed of more

than 2,000 containers.

Figure 8(b) shows that approximately 70% and 15% of

LLAs have anti-affinity and priority constraints, respectively.

In addition, we found that several LLAs cannot be co-located

with at least other 5,000 containers due to anti-affinity con-

straints, and these applications usually have higher priorities

and larger resource requirements. These features would lead to

undeployed containers or container migrations in the following

experiments for different schedulers. The maximum resource

requirements for the LLAs are 16 CPUs and 32GB RAM.

0 1000 2000
0

5000

10000

15000

C
D
F

Container numbers per application

Trace data from
Alibaba cluster

(a) CDF of container numbers per application

13056

9400

2088

0

2000

4000

6000

8000

10000

12000

14000

N
um
be
rs

Types

Total applications
Applications with anti-affinity
Applications with priority

(b) The number of constraints

Fig. 8: Workload features

Simulation. We run Aladdin’s codes and scheduling log-

ic on a machine with Intel(R) Xeon(R) CPU E5-2682 v4

CPU(2.50GHz), 32 GB RAM, and 1TB SSD disk, merely

stubbing out RPCs and task execution. However, there are

three important limitations to be noted. (i) the Alibaba trace

701

contains multi-dimensional resource requests for each task,

but we only consider CPU in order to compare Aladdin with

Firmament fairly. (ii) there are eight scheduling policies in

the Firmament [9] code base currently, and we select the three

most used policies. (iii) we implement Go-Kube with a similar

node scoring algorithm in Kubernetes 1.11. Table I shows all

the state-of-the-art schedulers used in our experiments.

TABLE I: The state-of-the-art schedulers used in our experi-

ments

Name Description

Firmament-TRIVIAL
Containers always scheduled
if resources are idle.

Firmament-QUINCY
Original Quincy cost model,
lower cost priority.

Firmament- OCTOPUS
Simple load balancing based
on container counts.

Medea
Balance resource efficiency
and constraint violations.

Go-Kube
Scoring machines and choose
the best one.

B. Placement quality

Metrics. We count the number of undeployed containers

after scheduling all LLAs to a 10,000-machine cluster, and

the lower number indicates the better the placement quality.

Environments. As described above, Firmament uses a

multi-round scheduling and a timeout mechanism for LLAs.

It may choose a non-optimized container to reschedule when

it detects any constraint conflicts. However, the selected one

sometimes may not be deployed to other machines to avoid

constraint violations. In this scenario, the solution is to choose

another container on the same machine to reschedule once

again. Here, we use reschd(i) to express the maximum

number of rescheduling containers on the same machine if we

encounter constraint conflicts, and we consider the case where

i is 1, 2, 4, 8, respectively. Medea [6] uses an integer linear

program (ILP) approach to place as many LLAs as possible.

It minimizes constraint violations and avoids resource frag-

mentation using three weights. Each weight is normalized to

a value ranging from 0 to 1. Here, we use weights(a, b, c) to

express this and consider the case where (a, b, c) is (1, 1, 1),
(1, 1, 0.5),(1, 1, 0), (1, 0.5, 0), respectively. In Aladdin, we set

the priority wn to 16, 32, 64, 128 according to Equation 4

(the maximum resource requirement for one application is 16

CPUs).

For Go-Kube/Kubernetes, 21.2% of the containers in Fig-

ures 9(a) to 9(d) cannot be deployed although it supports

anti-affinity and priority constraints. One of the main reasons

is that Go-Kube supports them separately, which means it

cannot reach global optimization when accounting for both

constraints. Moreover, similar conclusions have been drawn

from Medea.

For Firmament-TRIVIAL, the number of undeployed con-

tainers ranges from 4.3% to 34.7%, as shown in Figures 9(a)

to 9(d). The goal of Firmament-TRIVIAL is to minimize

the number of used machines, so it always tries to deploy

a container to the most packed machines. It probably ignores

anti-affinity and priority in the first round. Then, Firmament-

TRIVIAL detects constraint conflicts and uses simple policies

to choose a container to reschedule. Unfortunately, conflicts

may occur again because the container selecting policy be-

cause it is difficult for the container selecting policy to achieve

global objectives.
Firmament-OCTOPUS deploys a container to those ma-

chines with the least number of containers. Although the

number of undeployed containers is less than 10.7%, as shown

in Figures 9(a) to 9(d). However, Firmament-OCTOPUS still

suffers from constraint violations.
Firmament-QUINCY was originally designed without sup-

port for anti-affinity, but it can be enhanced by the multi-

round scheduling mechanism. As shown in Figures 9(a) to

9(d), Firmament-QUINCY ’s number of undeployed contain-

ers varies between 3.5% and 25.1%. It may encounter a

large amount of constraint violations set with the non-optimal

parameter i.
Medea is designed to maximize the number of deployed

containers and minimize violated constraints by weights. As

shown in Figures 9(a) to 9(d), if we set the weight (the third

parameter) to 0, Medea cannot tolerate violated constraints,

then the number of undeployed containers is reduced to 5.2%.

Otherwise, it would increase to 12.9%.
Aladdin outperforms the other schedulers on all tests as

it can deploy all containers to machines without constraint

violations. We can easily calculate the parameter to express

constraints and priorities, while other schedulers need to

identify the optimized parameters empirically.
Finally, Figure 9(e) shows that for all schedulers except

Aladdin, anti-affinity violations are inevitable and the ratio

of anti-affinity constraint violations is 65% at least.

C. Resource efficiency
Metrics. We count the machines used for 100,000 contain-

ers, denoted num(sched name). Then, the cluster efficiency

can be calculated by Equation 10.

efficiencyi =
num(i)

min{num(i), num(j), ...} − 1 (10)

Here, min{num(i), num(j), · · · } denotes the minimal

number of machines used for different schedulers.
Environments. We take Go-Kube, Medea(1,1,0),

Firmament-QUINCY(8) and Aladdin(16) for a comparison.

Related parameters are set optimally according to our

previous tests. Here we consider four characteristic situations

for arriving containers: (i) containers with high-priorities first,

(ii) containers with low-priorities first, (iii) containers with a

large number of anti-affinity constraints first, (iv) containers

with a small number of anti-affinity constraints first.
As shown in Figure 10, Aladdin outperforms the other

schedulers on all tests. It only needs 9,242 machines, while

Firmament-QUINCY and Medea needs more than 10,200

machines. Go-Kube needs 14,211 machines in the worst-case

scenario, which is 1.54 times more than Aladdin.

702

0

5

10

15

20

25

30

35

40

C
on
st
ra
in
tv
io
la
tio
ns
(%
)

Scheduler type

Go-Kube
Firmament-TRIVIAL(1)
Firmament-QUINCY(1)
Firmament-OCTOPUS(1)
MEDEA(1,1,1)
Aladdin(16)

(a) Firmament(1), Medea(1,1,1), Aladdin(16)

21.2

28.2

16.7

7.2
5.2

00

5

10

15

20

25

30

35

40

C
on
st
ra
in
tv
io
la
tio
ns
(%
)

Scheduler type

Go-Kube
Firmament-TRIVIAL(2)
Firmament-QUINCY(2)
Firmament-OCTOPUS(2)
MEDEA(1,1,0.5)
Aladdin(32)

(b) Firmament(2), Medea(1,1,0.5), Aladdin(32)

21.2

15.6

3.5
6.5 5.2

00

5

10

15

20

25

30

35

40

C
on
st
ra
in
tv
io
la
tio
ns
(%
)

Scheduler type

Go-Kube
Firmament-TRIVIAL(4)
Firmament-QUINCY(4)
Firmament-OCTOPUS(4)
MEDEA(1,1,0)
Aladdin(64)

(c) Firmament(4), Medea(1,1,0), Aladdin(64)

21.2

4.3 3.5

10.7

5.8

00

5

10

15

20

25

30

35

40

C
on
st
ra
in
tv
io
la
tio
ns
(%
)

Scheduler type

Go-Kube
Firmament-TRIVIAL(8)
Firmament-QUINCY(8)
Firmament-OCTOPUS(8)
MEDEA(1,0.5,0.5)
Aladdin(128)

(d) Firmament(8), Medea(1,0.5,0.5), Aladdin(128)

0

20

40

60

80

100

120

an
ti-
af
fin
ity
co
ns
tra
in
tv
io
la
tio
ns
ra
tio
(%
)

Types

Firmament-QUINCY(1) Firmament-QUINCY(2) Firmament-QUINCY(4) Firmament-QUINCY(8)

Firmament-TRIVIAL(1) Firmament-TRIVIAL(2) Firmament-TRIVIAL(4) Firmament-TRIVIAL(8)

Firmament-OCTOPUS(1) Firmament-OCTOPUS(2) Firmament-OCTOPUS(4) Firmament-OCTOPUS(8)

MEDEA(1,1,1) MEDEA(1,1,0.5) MEDEA(1,1,0) MEDEA(1,0.5,0.5)

(e) The ratio of anti-affinity constraint violations to total constraint violations

Fig. 9: Placement quality

703

Moreover, we find that the algorithms of Firmament-

QUINCY and Aladdin are robust. Both of them use flow

networks with proof-of-concept solving algorithms. Medea

integrates the ILP algorithm, which is essentially an approxi-

mation algorithm. Its results are relatively steady for all tests

according to Equation 10. Since the queuing model depends

on the arrival order of containers, Go-Kube gives wide-ranging

results on different tests.

In fact, Aladdin benefits from a multidimensional and

nonlinear capacity function, hence it avoids constraint viola-

tions by using the robust maximum flow algorithm. Although

Firmament-QUINCY also has the same model, it employs low-

efficient multi-round scheduling mechanism to support anti-

affinity.

Figure 11 also reflects the similar experiment results from

a different perspective. The vertical axis represents the range

of resource efficiency for all used machines. For example,

resource efficiency ranging from 20% to 70% means at least

at least one of used machines resource efficiency is 20%, and

one of them is 70%. It is clear to see the robustness of the

algorithm in Aladdin.

D. Placement latency

Metrics. Placement latency is the time period between

the submission of all LLAs and the completion of place-

ments. It also indicates the algorithm overhead. To make a

fair comparison with state-of-the-art schedulers, we calculate

the placement latency per container (aka average placement

latency) using Equation 11.

latency =
time(i)

total containers
(11)

Here, latency means the average placement latency of

100,000 containers with the specific scheduler i.
Environments. As described in Section IV, there are two

ways to reduce the placement latency: isomorphism limiting

(IL) and depth limiting (DL). Three policies are used in this

test: the Aladdin policy refers to the maximum flow algorithm

without any optimizations, the Aladdin + IL policy uses

the maximum flow algorithm with IL optimization, and the

Aladdin + IL + DL policy represents the maximum flow

algorithm with both optimizations.

As shown in Figure 12, Firmament-QUINCY’s latency is

only about 50ms and outperforms the others, no matter how

the cluster size changes. We also observe a similar trend for

latency for the three Aladdin policies, whereas hundreds of

milliseconds can be acceptable in the production environment.

In contrast, the latency of Go-Kube and Medea exceeds

one second with an increase in cluster scale. Diverse time

complexity causes these latency differences: the former is an

O(n) algorithm and the latter is exponential. Furthermore,

latency can be reduced by 50% if we use Aladdin+IL+DL
instead of the Aladdin policy.

Using the Aladdin+IL+DL policy, we then measure the

algorithm’s overhead for four different arrival characteristics

for containers, as demonstrated in Figure 13: (i) containers

with high priority first (aka CHP), (ii) containers with low

priority first (aka CLP), (iii) containers with a large number

of anti-affinity constraints first (aka CLA), (iv) containers with

a small number of anti-affinity constraints first (aka CSA).

13863
12755

12157

14211

10477 10477 10477 1047710262 10277 10262 10262
9242 9242 9242 9242

0

2000

4000

6000

8000

10000

12000

14000

16000

containers with a small number of
anti-affinity constraints first

containers with a large number of
anti-affinity constraints first

containers with low-priorities first

U
se
d
m
ac
hi
ne
nu
m
be
r

Containers arriving characteristic

Go-Kube Firmament-QUINCY MEDEA Aladdin

containers with high-priorities first

Fig. 10: Number of machines used for different container arrival characteristics

Go-Kube Firmament-QUINCY MEDEA Aladdin Go-Kube Firmament-QUINCY MEDEA Aladdin Go-Kube Firmament-QUINCY MEDEA Aladdin Go-Kube Firmament-QUINCY MEDEA Aladdin
0

20

40

60

80

100

containers with a small number of anti-affinity
constraints first

R
es
ou
rc
e
ra
ng
es
(%
)

the range of resource utilization average resource utilization

containers with a large number of anti-affinity
constraints first

containers with low-priorities firstcontainers with high-priorities first

Fig. 11: Resource efficiency for different container arrival characteristics

704

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
0

1000

2000

3000

4000

5000

A
ve
ra
ge
re
sp
on
se
tim
e
(m
s)

Machine numbers

Go-Kube
Firmament-QUINCY
MEDEA
Aladdin
Aladdin+IL
Aladdin+IL+DL

Fig. 12: Average placement latency

0 1k 2k 4k 8k
�

�

�

�

�

��

��

��

��

A
lg
or
ith
m
ov
er
he
ad
(m
in
ut
es
)

Machines

CHP
CLP
CLA
CSA

(a) Aladdin’s approach scales as cluster size grows

0 1k 2k 4k 8k 10k
0

200

400

600

800

1000

1200

1400

1600

1800

M
ig
ra
tio
n
co
st
(n
um
be
rs
)

Machines

CHP
CLP
CLA
CSA

(b) The cost of migration and preemption

Fig. 13: Algorithm overhead

As shown in Figure 13(a), the algorithm runtime under

the four situations increases linearly when deploying the

containers, and it needs about 15 minutes to complete the

placement decision of 100,000 containers in the worst case

(CSA). In practice, this is acceptable in the Alibaba trace.

Moreover, we can see that Aladdin can reduce the latency

by 30% in the best case (CLA). The overhead of different

algorithms for the same LLAs size depends on the cost of

migrations and preemptions.

Figure 13(b) shows the migration of CSA is nearly 1,700,

which means only 1.7% of the total containers need to be

migrated. The main reasons are: (i) the average resource

utilization for the used machines is less than 50%, which can

alleviate preemption costs, and minimize migrations; (ii) LLAs

with higher priorities always have more instances and larger

resource requirements. CHP and CSA policies can effectively

reduce resource fragments, as described in Section IV.D.

VI. RELATED WORK

DAG-oriented Schedulers. YARN [25] and Mesos [11]

were originally designed for task-based DAG jobs to increase

resource efficiency. Sparrow [10], Mercury [4], Apollo [26]

and 3Sigma [27] employs distributed or hybrid architectures

to provide the high cluster efficiency and reduce placement

latency. Carbyne [28] extends Mesos to keep fairness while

shortening the job completion time (JCT). It employs DRF

[29] or HUG [30] with a delay scheduling mechanism [31]

to schedule DAG tasks. HaaS [32] employs sub-graphs to

represent the topology of both clusters and DAG tasks. It also

supports GPUs and FPGAs. Quincy [20] and Firmament [9]

balance data-locality, placement latency and cluster efficiency.

Unlike Aladdin, these DAG-oriented schedulers achieve op-

timized global objectives such as placement latency or JCT

but they find it difficult to adjust LLAs (e.g., Aurora [33],

Marathon [34]) due to complex constraints.

In recent years, data-driven scheduling models have been

proposed to achieve higher cluster efficiency in the production

environment. Microsoft [35], Alibaba [36], and Google [37]

have already make their cluster traces open source. Several

research efforts [38–40] have focused on tasks with complex

dependency structures and heterogeneous resource demands.

They focus on long-running DAG tasks with tough-to-pack

resource demands and compute a DAG schedule offline, while

Aladdin is an online scheduling system.

LLA-aware schedulers. Google’s Borg [5] and its open-

source version Kubernetes [23] manage both LLAs and short

jobs in queuing models. They integrate many virtualization

technologies (e.g., GCE, LXC, Docker) naturally. Borg only

considers affinity constraints between tasks and machines,

while Kubernetes provides more. Besides, many efforts of VM

placements [41, 42] are mainly on SLAs to support elementary

constraints. Although they support many constraints, neither is

able to achieve optimal global objectives in the long run. Our

experiments have similar results.

Apart from queue-based scheduling’s locality, ILP-based

scheduling is a natural choice to achieve optimal global

objectives. FlowTime [43] concentrates on meeting deadlines

for both individual jobs and LLAs. It uses ILP to minimize

the turnaround time of ad-hoc jobs, which makes scheduling

more balanced in mixed clusters. TetriSched [15] takes both

placements and deadlines as constraints, but the latency could

be intolerable when workload is high. Medea’s [6] inputs

are the LLAs with placement constraints. Medea can achieve

optimal scheduling results within acceptable latency when its

705

weighted values are properly set. ILP-based schedulers need

to prove the availability of arithmetical values, otherwise they

can face constraints violation or an increase in latency again.

In this paper, Aladdin’s non-linear function makes it much

easier than ILP-based methods to express constraints within

graceful latency degradation.

In conclusion, both LLAs and task-based DAG jobs have

common characteristics, which makes it possible to design

schedulers which consider elementary constraints. For exam-

ple, many research efforts on VM placements mainly focus

on SLAs [35, 41, 42, 44]. Some schedulers, like SLAQ [45]

and Optimus [39], build a relationship between the resource

provision and the convergence rate of machine learning appli-

cations.

VII. CONCLUSION

In this paper, we presented Aladdin, a scheduler for effi-

ciently scheduling long-lived applications (LLAs) with con-

tainers. Aladdin is the first system that fully supports anti-

affinity and priority constraints both within and across LLAs,

which is crucial for the performance of LLAs. It designs a

multidimensional and nonlinear capacity function based on

flow network model. Experiments with an Alibaba workload

trace from a 10,000-machine cluster show that Aladdin can

effectively reduce constraint violations. We will extend the

flow-based model to support heterogeneous workloads in the

near future.

ACKNOWLEDGMENT

This work was supported by National Key Research and

Development Program of China (2018YFB1003602), National

Natural Science Foundation of China (61572480), and Alibaba

Group through Alibaba Innovative Research (AIR) Program.

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, et al. Ten-

sorflow: a system for large-scale machine learning. In

OSDI, volume 16, pages 265–283, 2016.

[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,

Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache

flink: Stream and batch processing in a single engine.

Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[3] Sameh Elnikety, Manoj Syamala, Vivek Narasayya,

Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack

Zhang, and Junhua Wang. Perfiso: performance isolation

for commercial latency-sensitive services. 2018.

[4] Konstantinos Karanasos, Sriram Rao, Carlo Curino,

Chris Douglas, Kishore Chaliparambil, Giovanni Mat-

teo Fumarola, Solom Heddaya, Raghu Ramakrishnan,

and Sarvesh Sakalanaga. Mercury: Hybrid centralized

and distributed scheduling in large shared clusters. In

USENIX Annual Technical Conference, pages 485–497,

2015.

[5] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Computer
Systems, page 18. ACM, 2015.

[6] Panagiotis Garefalakis, Konstantinos Karanasos, Peter R

Pietzuch, Arun Suresh, and Sriram Rao. Medea: schedul-

ing of long running applications in shared production

clusters. In EuroSys, pages 4–1, 2018.

[7] Taobao. http://www.taobao.com.

[8] Black friday. https://blackfriday.com.

[9] Ionel Gog, Malte Schwarzkopf, Adam Gleave,

Robert Nicholas Watson, and Steven Hand. Firmament:

Fast, centralized cluster scheduling at scale. Usenix,

2016.

[10] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion

Stoica. Sparrow: distributed, low latency scheduling. In

Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 69–84. ACM, 2013.

[11] Benjamin Hindman, Andy Konwinski, Matei Zaharia,

Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott

Shenker, and Ion Stoica. Mesos: A platform for fine-

grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[12] Google’s marissa mayer: Speed wins. https://www.zdnet.

com/article/googles-marissa-mayer-speed-wins.

[13] Leiphone. https://www.leiphone.com/news/201610/

R0FXfe0mJlmu-eVT7.html.

[14] Bikash Sharma, Victor Chudnovsky, Joseph L Heller-

stein, Rasekh Rifaat, and Chita R Das. Modeling and

synthesizing task placement constraints in google com-

pute clusters. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, page 3. ACM, 2011.

[15] Alexey Tumanov, Timothy Zhu, Jun Woo Park,

Michael A Kozuch, Mor Harchol-Balter, and Gregory R

Ganger. Tetrisched: global rescheduling with adap-

tive plan-ahead in dynamic heterogeneous clusters. In

Proceedings of the Eleventh European Conference on
Computer Systems, page 35. ACM, 2016.

[16] Ionel Corneliu Gog. Flexible and efficient computation in
large data centres. PhD thesis, University of Cambridge,

2018.

[17] Malte Schwarzkopf. Operating system support for
warehouse-scale computing. PhD thesis, University of

Cambridge, 2018.

[18] David Lo, Liqun Cheng, Rama Govindaraju,

Parthasarathy Ranganathan, and Christos Kozyrakis.

Heracles: Improving resource efficiency at scale. In ACM
SIGARCH Computer Architecture News, volume 43,

pages 450–462. ACM, 2015.

[19] Anup Das, Akash Kumar, and Bharadwaj Veeravalli.

Reliability and energy-aware mapping and scheduling

of multimedia applications on multiprocessor systems.

IEEE Transactions on Parallel and Distributed Systems,

27(3):869–884, 2016.

[20] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi

706

Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:

fair scheduling for distributed computing clusters. In

Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276. ACM,

2009.

[21] Ravindra K Ahuja. Network flows: theory, algorithms,
and applications. Pearson Education, 2017.

[22] Offer Shai. Multidimensional max-flow method and its

application for plastic analysis. Advances in Engineering
Software, 36(6):401–411, 2005.

[23] Kubernetes. https://kubernetes.io/.

[24] Aladdin. https://github.com/qcase/aladdin.

[25] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas,

Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas

Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al.

Apache hadoop yarn: Yet another resource negotiator.

In Proceedings of the 4th annual Symposium on Cloud
Computing, page 5. ACM, 2013.

[26] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-

gren Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou.

Apollo: Scalable and coordinated scheduling for cloud-

scale computing. In OSDI, volume 14, pages 285–300,

2014.

[27] Jun Woo Park, Alexey Tumanov, Angela Jiang,

Michael A Kozuch, and Gregory R Ganger. 3sigma:

distribution-based cluster scheduling for runtime uncer-

tainty. In Proceedings of the Thirteenth EuroSys Confer-
ence, page 2. ACM, 2018.

[28] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,

and Ganesh Ananthanarayanan. Altruistic scheduling in

multi-resource clusters. In OSDI, pages 65–80, 2016.

[29] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy

Konwinski, Scott Shenker, and Ion Stoica. Dominant

resource fairness: Fair allocation of multiple resource

types. In Nsdi, volume 11, pages 24–24, 2011.

[30] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion

Stoica. Hug: Multi-resource fairness for correlated and

elastic demands. In NSDI, pages 407–424, 2016.

[31] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,

Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay

scheduling: a simple technique for achieving locality and

fairness in cluster scheduling. In Proceedings of the 5th
European conference on Computer systems, pages 265–

278. ACM, 2010.

[32] Jiong He, Yao Chen, Tom ZJ Fu, Xin Long, Marianne

Winslett, Liang You, and Zhenjie Zhang. Haas: Cloud-

based real-time data analytics with heterogeneity-aware

scheduling. In 2018 IEEE 38th International Confer-
ence on Distributed Computing Systems (ICDCS), pages

1017–1028. IEEE, 2018.

[33] Alibaba aurora. http://aurora.apache.org.

[34] Marathon. http://mesosphere.github.io/marathon.

[35] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russi-

novich, Marcus Fontoura, and Ricardo Bianchini. Re-

source central: Understanding and predicting workload-

s for improved resource management in large cloud

platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 153–167. ACM,

2017.

[36] Alibaba cluster data. https://github.com/alibaba/

clusterdata.

[37] Google cluster data. https://github.com/google/

cluster-data.

[38] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya

Akella, and Janardhan Kulkarni. G: Packing and

dependency-aware scheduling for data-parallel clusters.

In Proceedings of OSDI16: 12th USENIX Symposium on
Operating Systems Design and Implementation, page 81,

2016.

[39] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and

Chuanxiong Guo. Optimus: an efficient dynamic resource

scheduler for deep learning clusters. In Proceedings of
the Thirteenth EuroSys Conference, page 3. ACM, 2018.

[40] Luping Wang and Wei Wang. Fair coflow scheduling

without prior knowledge. In 2018 IEEE 38th Inter-
national Conference on Distributed Computing Systems
(ICDCS), pages 22–32. IEEE, 2018.

[41] Ayoub Alsarhan, Awni Itradat, Ahmed Y Al-Dubai, Al-

bert Y Zomaya, and Geyong Min. Adaptive resource

allocation and provisioning in multi-service cloud envi-

ronments. IEEE Transactions on Parallel and Distributed
Systems, 29(1):31–42, 2018.

[42] Pawel Janus and Krzysztof Rzadca. Slo-aware colocation

of data center tasks based on instantaneous processor

requirements. In Proceedings of the 2017 Symposium
on Cloud Computing, pages 256–268. ACM, 2017.

[43] Zhiming Hu, Baochun Li, Chen Chen, and Xiaodi Ke.

Flowtime: Dynamic scheduling of deadline-aware work-

flows and ad-hoc jobs. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS),
pages 929–938. IEEE, 2018.

[44] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,

Shravan Matthur Narayanamurthy, Alexey Tumanov,

Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru

Krishnan, Janardhan Kulkarni, et al. Morpheus: Towards

automated slos for enterprise clusters. In OSDI, pages

117–134, 2016.

[45] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J

Freedman. Slaq: quality-driven scheduling for distributed

machine learning. In Proceedings of the 2017 Symposium
on Cloud Computing, pages 390–404. ACM, 2017.

707

View publication statsView publication stats

https://www.researchgate.net/publication/335579102

